首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   38篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   22篇
  2015年   23篇
  2014年   27篇
  2013年   50篇
  2012年   34篇
  2011年   67篇
  2010年   33篇
  2009年   33篇
  2008年   41篇
  2007年   50篇
  2006年   48篇
  2005年   49篇
  2004年   38篇
  2003年   43篇
  2002年   39篇
  2001年   9篇
  2000年   13篇
  1999年   12篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   9篇
  1992年   9篇
  1991年   15篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   7篇
  1985年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1972年   1篇
  1969年   1篇
排序方式: 共有808条查询结果,搜索用时 15 毫秒
61.

Background  

An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis.  相似文献   
62.

Background  

In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown.  相似文献   
63.
Enzymatic cleavage of the P-chiral diastereoisomers of the 5' mRNA cap analogue bearing phosphorothioate moiety in alfa position of 5',5'-triphosphate bridge (m(7)Gppp(S)G D1 and D2) was performed by human Decapping Scavenger (DcpS) enzyme. Analysis of the degradation products allowed to estimate the absolute configuration at the asymmetric phosphorus atoms in examined compounds via correlation with the R(P) and S(P) diastereoisomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS).  相似文献   
64.
Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure–function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.  相似文献   
65.
The accumulation of soluble carbohydrates in maturing diaspores of flowering plants comprising Arctic populations of Cerastium alpinum, indigenous Antarctic species Colobanthus quitensis and Deschampsia antarctica, and cosmopolitan Poa annua from the Antarctic was investigated. For comparative purposes, the diaspores of two species of flowering plants growing in the area of Olsztyn (Poland), Poa annua (Poaceae) and Cerastium arvense (Caryophyllaceae) were used. A qualitative and quantitative analysis of soluble carbohydrates conducted by means of high-resolution gas chromatography showed that monosaccharides (glucose and fructose), maltose and sucrose, raffinose, myo-inositol and galactinol are ubiquitous in developing and mature diaspores among investigated species. Moreover, D. antarctica and P. annua caryopses additionally contained stachyose and 1-kestose; the seeds of Caryophyllaceae studied were found to contain d-pinitol and d-ononitol. The development and maturation of the seeds of polar Caryophyllaceae and Poaceae were accompanied by the changes in the concentration of their soluble carbohydrates. During maturation, seeds accumulated galactinol and raffinose family of oligosaccharides (RFOs), except C. quitensis. Although seeds of the studied Caryophyllaceae contained d-pinitol and lower amounts of d-ononitol, they did not accumulate α-d-galactoside derivatives of mentioned cyclitols. P. annua caryopses, occurring in the Antarctic, were found to accumulate considerably higher amounts of sucrose and 1-kestose than those developed in Olsztyn.  相似文献   
66.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   
67.

Background

Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive.

Results

Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs.

Conclusion

We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.  相似文献   
68.
The DFT calculations at the B3LYP level with 6-311G** basis set were carried out in order to reveal whether tautomerization or decarboxylation is responsible for the instability of 2,2-di(pyridin-2-yl)acetic (DPA) and 1,8-diazafluorene-9-carboxylic (DAF) acids. The carboxyl protons in both compounds are involved in the intramolecular hydrogen bonds (the pyridine nitrogen atoms are the hydrogen bond acceptors). Although formation of two intramolecular OH···N hydrogen bonds in the enols of both carboxylic acids enables effective electron delocalization within the quasi rings (···HO − C = C − C = N), only ene-1,1-diol of DAF has somewhat lower energy than DAF itself (ΔE is ca. 7 kcal mol-1). DPA and its enediol have comparable energies. Migration of the methine proton toward the carbonyl oxygen atom (to form enediols) requires overstepping the energy barriers of 55-57 kcal mol-1 for both DPA and DAF. The enaminone tautomers of the acids, formed by migration of this proton toward the pyridine nitrogen atom, are thermodynamically somewhat more stable than the respective enediols. The energy barriers of these processes are equal to ca. 44 and 62 kcal mol-1 for DPA and DAF, respectively. Thus, such tautomerization of the acids is not likely to proceed. On the other hand, the distinct energetic effects (ca. 15 kcal mol-1) favor decarboxylation. This process involves formation of (E)-2-(pyridin-2(1H)-ylidenemethyl)pyridine and its cyclic analogue followed by their tautomerization to (dipyridin-2-yl)methane and 1,8-diazafluorene, respectively. Although the later compound was found to be somewhat thermodynamically more stable, kinetic control of tautomerization of the former is more distinct.  相似文献   
69.

Background

Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited.

Results

To investigate the metabolism of N. meningitidis we generated and then selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium, such as a requirement for phosphoenolpyruvate carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids.

Conclusions

This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.  相似文献   
70.
The involvement of both apolipoprotein E (apoE) and mitochondria in lipid metabolism is widely recognized, however there is surprisingly scarce data about the putative mitochondrial action(s) of this protein. The aim of the study was to screen the alterations in liver mitochondrial proteome caused by apoE deficiency. We applied 2DE-LC-MS/MS methodology to investigate the changes in liver mitochondrial protein expression in 6-months old apoE(-/-) mice as compared to C57BL/6J controls. ApoE(-/-), but not C57BL/6J mice developed visible atherosclerotic changes in aorta and mild, diffuse steatosis of the liver. Collectively, 18 differentially expressed proteins were identified in mitochondria, related to apoptosis, antioxidant and detoxifying mechanisms of mitochondria, as well as lipid metabolism and transport. In conclusion, differential proteomic approach revealed several lines of proteomic evidence that mitochondrial function in the liver of apoE(-/-) mice could be altered as a result of overlapping of pathological and compensatory changes in expression of proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号