首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   12篇
  130篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   12篇
  2007年   15篇
  2006年   6篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
101.
碲化镉(CdTe)探测器的原理及医学应用   总被引:5,自引:0,他引:5  
本文介绍了一种新型的化合物半导体探测器——CdTe探测器,它具有灵敏度高,探测效率高、能量分辨率好、可以在室温下使用,以及对湿度不敏感和体积小等优点,并介绍了该探测器在医学应用方面的前景。  相似文献   
102.
Accumulation of chlorophylls and heme is primarily controlled at the level of 5-aminolevulinate (ALA) synthesis in higher plants. ALA is formed from glutamate in three enzymatic steps in plants. Among them, the reduction of glutamyl-tRNAGluto glutamate-1-semialdehyde (GSA) is likely to be a regulatory point of ALA synthesis. This reaction is catalyzed by glutamyl-tRNA reductase (GTR), which is encoded by a hemA gene. We have isolated a novel isoform of a hemA cDNA clone from barley (Hordeum vulgare) that is the third member of the hemA gene family. mRNA of this isoform is accumulated primarily in roots, suggesting that the isoform is regulated in an organ-specific manner by the demand for heme synthesis rather than chlorophyll. Phylogenetic analysis was done using the deduced amino acid sequences of hemA isoforms from barley, cucumber and Arabidopsis thaliana. The results indicate that the existing gene families in these plants arose after the divergence of monocotyledonous and dicotyledonous plants.  相似文献   
103.
Proteins that contain iron–sulfur (Fe–S) clusters play pivotal roles in various metabolic processes such as photosynthesis and redox metabolism. Among the proteins involved in the biosynthesis of Fe–S clusters in plants, the SUFB subunit of the SUFBCD complex appears to be unique because SUFB has been reported to be involved in chlorophyll metabolism and phytochrome‐mediated signaling. To gain insights into the function of the SUFB protein, we analyzed the phenotypes of two SUFB mutants, laf6 and hmc1, and RNA interference (RNAi) lines with reduced SUFB expression. When grown in the light, the laf6 and hmc1 mutants and the SUFB RNAi lines accumulated higher levels of the chlorophyll biosynthesis intermediate Mg‐protoporphyrin IX monomethylester (Mg‐proto MME), consistent with the impairment of Mg‐proto MME cyclase activity. Both SUFC‐ and SUFD‐deficient RNAi lines accumulated the same intermediate, suggesting that inhibition of Fe‐S cluster synthesis is the primary cause of this impairment. Dark‐grown laf6 seedlings also showed an increase in protoporphyrin IX (Proto IX), Mg‐proto, Mg‐proto MME and 3,8‐divinyl protochlorophyllide a (DV‐Pchlide) levels, but this was not observed in hmc1 or the SUFB RNAi lines, nor was it complemented by SUFB overexpression. In addition, the long hypocotyl in far‐red light phenotype of the laf6 mutant could not be rescued by SUFB overexpression and segregated from the pale‐green SUFB‐deficient phenotype, indicating it is not caused by mutation at the SUFB locus. These results demonstrate that biosynthesis of Fe–S clusters is important for chlorophyll biosynthesis, but that the laf6 phenotype is not due to a SUFB mutation.  相似文献   
104.
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases.  相似文献   
105.
106.
107.
108.
109.
Molecular chaperones are known to be involved in many cellular functions, however, a detailed and comprehensive overview of the interactions between chaperones and their cofactors and substrates is still absent. Systematic analysis of physical TAP‐tag based protein–protein interactions of all known 63 chaperones in Saccharomyces cerevisiae has been carried out. These chaperones include seven small heat‐shock proteins, three members of the AAA+ family, eight members of the CCT/TRiC complex, six members of the prefoldin/GimC complex, 22 Hsp40s, 1 Hsp60, 14 Hsp70s, and 2 Hsp90s. Our analysis provides a clear distinction between chaperones that are functionally promiscuous and chaperones that are functionally specific. We found that a given protein can interact with up to 25 different chaperones during its lifetime in the cell. The number of interacting chaperones was found to increase with the average number of hydrophobic stretches of length between one and five in a given protein. Importantly, cellular hot spots of chaperone interactions are elucidated. Our data suggest the presence of endogenous multicomponent chaperone modules in the cell.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号