首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   42篇
  727篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2018年   11篇
  2017年   3篇
  2016年   12篇
  2015年   11篇
  2014年   10篇
  2013年   42篇
  2012年   23篇
  2011年   27篇
  2010年   16篇
  2009年   18篇
  2008年   31篇
  2007年   25篇
  2006年   22篇
  2005年   20篇
  2004年   47篇
  2003年   41篇
  2002年   17篇
  2001年   20篇
  2000年   20篇
  1999年   26篇
  1998年   10篇
  1997年   16篇
  1996年   10篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   23篇
  1991年   24篇
  1990年   12篇
  1989年   21篇
  1988年   20篇
  1987年   10篇
  1986年   11篇
  1985年   6篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1979年   14篇
  1978年   3篇
  1977年   5篇
  1974年   4篇
  1973年   3篇
  1969年   4篇
  1967年   5篇
  1965年   5篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
81.
How the endoplasmic reticulum (ER) and mitochondria communicate with each other and how they regulate plasmalemmal Ca2+ entry were studied in cultured rat brown adipocytes. Cytoplasmic Ca2+ or Mg2+ and mitochondrial membrane potential were measured by fluorometry. The sustained component of rises in cytoplasmic Ca2+ concentration ([Ca2+]i) produced by thapsigargin was abolished by removing extracellular Ca2+, depressed by depleting extracellular Na+, and enhanced by raising extracellular pH. FCCP, dinitrophenol, and rotenone caused bi- or triphasic rises in [Ca2+]i, in which the first phase was accompanied by mitochondrial depolarization. The FCCP-induced first phase was partially inhibited by oligomycin but not by ruthenium red, cyclosporine A, U-73122, a Ca2+-free EGTA solution, and an Na+-free solution. The FCCP-induced second phase paralleling mitochondrial repolarization was partially blocked by removing extracellular Ca2+ and fully blocked by oligomycin but not by thapsigargin or an Na+-deficient solution, was accompanied by a rise in cytoplasmic Mg2+ concentration, and was summated with a high pH-induced rise in [Ca2+]i, whereas the extracellular Ca2+-independent component was blocked by U-73122 and cyclopiazonic acid. The FCCP-induced third phase was blocked by removing Ca2+ but not by thapsigargin, depressed by decreasing Na+, and enhanced by raising pH. Cyclopiazonic acid-evoked rises in [Ca2+]i in a Ca2+-free solution were depressed after FCCP actions. Thus mitochondrial uncoupling causes Ca2+ release, activating Ca2+ release from the ER and store-operated Ca2+ entry, and directly elicits a novel plasmalemmal Ca2+ entry, whereas Ca2+ release from the ER activates Ca2+ accumulation in, or release from, mitochondria, indicating bidirectional mitochondria-ER couplings in rat brown adipocytes. plasmalemmal calcium entry; calcium release; mitochondrial depolarization; FCCP  相似文献   
82.
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.  相似文献   
83.
To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources.  相似文献   
84.
Mitochondrial β-oxidation is an important system involved in the energy production of various cells. In this system, the function of l-carnitine is essential for the uptake of fatty acids to mitochondria. However, it is unclear whether or not endogenous respiration, ADP-induced O2 consumption without substrates, is caused by l-carnitine treatment. In this study, we investigated whether l-carnitine is essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by phospholipase A2 (PLA2) using isolated mitochondria from the liver of rats. Intact mitochondria were incubated in a medium containing Pi, CoA and l-carnitine. The effect of l-carnitine treatment on ADP-induced mitochondrial respiration was observed without exogenous respiratory substrate. Increase in mitochondrial respiration was induced by treatment with l-carnitine in a concentration-dependent manner. Treatment with rotenone, a complex I blocker, completely inhibited ADP-induced oxygen consumption even in the presence of l-carnitine. Moreover, the l-carnitine dependent ADP-induced mitochondrial oxygen consumption did not increase when PLA2 inhibitors were treated before ADP treatment. The l-carnitine-dependent ADP-induced oxygen consumption did contribute to ATP productions but not heat generation via an uncoupling system. These results suggest that l-carnitine might be essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by PLA2.  相似文献   
85.
A dye injection method was used to elucidate the xylem water-conducting pathways of 34 broadleaved evergreen trees growing in southern Japan: two semi-ring-porous, 26 diffuse-porous, five radial-porous and one non-vessel species. The large earlywood vessels in semi-ring-porous species have a water transport function in only the outermost annual ring, as in deciduous ring-porous species. On the other hand, the small vessels in semi-ring-porous species maintain the water transport function in many outer annual rings. For the other xylem-type species, the many vessels in many outer annual rings have a water transport function. In diffuse-porous species, we categorized the water-conducting pattern within the annual rings into two types: d1 type, where water travels through vessels in the whole region; and d2 type, where water travels mainly through the earlywood vessels. The pattern in radial-porous species is similar to that in the d1 type; the pattern in non-vessels species is similar to that in the d2 type. The vessel diameter in radial-porous species is similar to that of the earlywood vessels of semi-ring-porous species. These results suggest that the conduit diameter size is only one of many factors determining the water-conducting pathways of broadleaved evergreen species.  相似文献   
86.
Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2 h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 °C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.  相似文献   
87.
To establish a strategy for the comprehensive identification of human N‐myristoylated proteins, the susceptibility of human cDNA clones to protein N‐myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell‐free protein synthesis system. One‐hundred‐and‐forty‐one cDNA clones with N‐terminal Met‐Gly motifs were selected as potential candidates from ~2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N‐myristoylation was evaluated using fusion proteins, in which the N‐terminal ten amino acid residues were fused to an epitope‐tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N‐myristoylated. The metabolic labeling experiments both in an insect cell‐free protein synthesis system and in the transfected COS‐1 cells using full‐length cDNA revealed that 27 out of 29 proteins were in fact N‐myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N‐myristoylated proteins that have not been reported previously to be N‐myristoylated, indicating that this strategy is useful for the comprehensive identification of human N‐myristoylated proteins from human cDNA resources.  相似文献   
88.
For the determination of substrate specificities of thermophilic alpha-aminotransferases (AATs), a novel high-throughput assay method was developed. In this method, a thermophilic omega-aminotransferase (OAT) and a thermophilic aldehyde dehydrogenase (ALDH) are coupled to the AAT reaction. Glutamic acid is used as an amino group donor for the AAT reaction yielding 2-oxoglutalic acid. 2-Oxoglutalic acid produced by the AAT reaction is used as an amino group acceptor in the OAT reaction regenerating glutamic acid. The amino group donor of the OAT reaction is 5-aminopentanoic acid yielding pentanedioic acid semialdehyde which is oxidized by ALDH to pentanedioic acid with concomitant reduction of NADP(+) to NADPH. NADPH thus produced then reduces colorless tetrazolium salt into colored formazan. To construct such a reaction system, the genes for a thermophilic AAT, a thermophilic OAT and a thermophilic ALDH were cloned and expressed in Escherichia coli. These enzymes were subsequently purified and used to determine the activities of AAT for the synthesis of unnatural amino acids. This method allowed the clear detection of the AAT activities as it measures the increase in the absorbance on a low background absorbance reading.  相似文献   
89.
The aim of the present work is to clarify the mechanism(s) that regulates the accumulation of protoporphyrin IX (PpIX) in human histiocytic lymphoma cell line U937 incubated with 5-aminolevulinic acid (ALA). Biosynthesis and accumulation of PpIX in the cells was determined after incubation with 0.1-5 mM ALA using a flow cytometric technique. The synthesized endogenous PpIX was found to localize predominantly in the mitochondrial region of the cells. The ALA-enhanced PpIX synthesis was suppressed by the presence of either beta-alanine, a competitive inhibitor of beta-transporters on cell membranes, or carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, an uncoupler of mitochondrial oxidative phosphorylation. In contrast, cellular accumulation of PpIX was enhanced by the presence of either deferoxamine (an iron chelater), MnCl2 (a ferrochelatase inhibitor), or Sn-mesoporphyrin (heme oxygenase inhibitor). These results suggest that ALA-enhanced accumulation of PpIX in U937 cells was regulated by cellular uptake and conversion of ALA to PpIX and by degradation of Heme.  相似文献   
90.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号