首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   98篇
  2022年   5篇
  2021年   16篇
  2020年   12篇
  2019年   9篇
  2018年   23篇
  2017年   12篇
  2016年   27篇
  2015年   32篇
  2014年   39篇
  2013年   68篇
  2012年   61篇
  2011年   61篇
  2010年   41篇
  2009年   47篇
  2008年   70篇
  2007年   62篇
  2006年   55篇
  2005年   46篇
  2004年   47篇
  2003年   43篇
  2002年   48篇
  2001年   34篇
  2000年   51篇
  1999年   45篇
  1998年   26篇
  1997年   24篇
  1996年   17篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   22篇
  1991年   17篇
  1990年   31篇
  1989年   22篇
  1988年   17篇
  1987年   23篇
  1986年   14篇
  1985年   5篇
  1984年   15篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1978年   7篇
  1975年   11篇
  1974年   5篇
  1973年   6篇
  1971年   9篇
  1969年   8篇
  1967年   6篇
排序方式: 共有1310条查询结果,搜索用时 15 毫秒
41.
42.
Phosphorylation is a major post‐translational modification that plays a central role in signaling pathways. Protein kinases phosphorylate substrates (phosphoproteins) by adding phosphate at Ser/Thr or Tyr residues (phosphosites). A large amount of data identifying and describing phosphosites in phosphoproteins has been reported but the specificity of phosphorylation is not fully resolved. In this report, data of kinase‐substrate pairs identified by the Kinase‐Interacting Substrate Screening (KISS) method were used to analyze phosphosites in intrinsically disordered regions (IDRs) of intrinsically disordered proteins. We compared phosphorylated and nonphosphorylated IDRs and found that the phosphorylated IDRs were significantly longer than nonphosphorylated IDRs. The phosphorylated IDR is often the longest IDR (71%) in a phosphoprotein when only a single phosphosite exists in the IDR, and when the phosphoprotein has multiple phosphosites in an IDR(s), the phosphosites are primarily localized in a single IDR (78%) and this IDR is usually the longest one (81%). We constructed a stochastic model of phosphorylation to estimate the effect of IDR length. The model that accounted for IDR length produced more realistic results when compared with a model that excluded the IDR length. We propose that the IDR length is a significant determinant for locating kinase phosphorylation sites in phosphoproteins.  相似文献   
43.
44.
Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.

To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators—including inorganic ions, antibiotics, and antibiotic resistance genes—were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 μg/L.

Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes—tet(M), tet(O), tet(Q), and tet(W)—were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period.  相似文献   
45.
46.
47.
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.  相似文献   
48.
The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.  相似文献   
49.
After eradication and containment of wild poliovirus (PV) and cessation of oral polio vaccinations, it is critical to minimize the risk of reintroducing PV into PV-free communities via facilities that handle the virus. The potential risk of unintentional PV propagation through unidentified contaminated materials is a serious issue. This study reports the generation of HeLa and RD-A cells deficient in functional CD155 gene (∆PVR cells); these cells are not susceptible to PV but remain susceptible to other picornaviruses. These ∆PVR cells will minimize the risk of unintentional transmission of PV and support performing the experiments more safely.  相似文献   
50.
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing two calcium-binding EF-hand motifs, is necessary and sufficient for both its localization to the centrosome and interaction with XPC. In XPC-deficient cells, nuclear localization of overexpressed centrin-2 largely depends on co-overexpression of XPC, and mutational analyses of the C-terminal domain suggest that XPC and the major binding partner in the centrosome share a common binding surface on the centrin-2 molecule. On the other hand, the N-terminal domain of centrin-2 also contains two EF-hand motifs but shows only low-binding affinity for calcium ions. Although the N-terminal domain is dispensable for enhancement of the DNA damage recognition activity of XPC, it contributes to augmenting rather weak physical interaction between XPC and XPA, another key factor involved in NER. These results suggest that centrin-2 may have evolved to bridge two protein factors, one with high affinity and the other with low affinity, thereby allowing delicate regulation of various biological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号