首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   61篇
  799篇
  2023年   5篇
  2022年   15篇
  2021年   18篇
  2020年   14篇
  2019年   13篇
  2018年   16篇
  2017年   15篇
  2016年   23篇
  2015年   33篇
  2014年   44篇
  2013年   79篇
  2012年   74篇
  2011年   67篇
  2010年   25篇
  2009年   31篇
  2008年   44篇
  2007年   30篇
  2006年   34篇
  2005年   36篇
  2004年   31篇
  2003年   22篇
  2002年   24篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1994年   4篇
  1992年   8篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1987年   5篇
  1986年   7篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1970年   4篇
排序方式: 共有799条查询结果,搜索用时 0 毫秒
61.
We established a new plant defense response assay using a transient expression system in rice protoplasts. The assay system sensitively detected defense induction by flagellin, which had previously been assigned to a specific elicitor. Our assay system provides a rapid and efficient way to dissect rice defense mechanisms.  相似文献   
62.
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A?/?; Sema5B?/? mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.  相似文献   
63.
Porcine membrane cofactor protein (pMCP) is abundantly expressed throughout the body with particularly strong expression on the vascular endothelia. Previous studies demonstrated that the promoter of the pMCP gene induced efficient expression of a human complement regulatory protein, decay-accelerating factor (DAF; CD55), in transgenic mice. In the present study, we tried to produce transgenic pigs with two hybrid genes, 0.9/hDAF and 5.4/hDAF, which were composed of human DAF (hDAF) gene regulated under pMCP promoters of different lengths (0.9 and 5.4 kb). Five live founder transgenic pigs were obtained only with the 0.9/hDAF construct. Although, four founder pigs transmitted the transgene to the second generation, the transmission rates varied among founders. We examined the expression of hDAF in tissues of descendants of two lines (Dm1 and Dm4). Human DAF specific RNAs were confirmed by an RT-PCR analysis in all organs examined. Levels of hDAF protein in the organs from the descendants of Dm1 line were higher than those in the corresponding human organs as determined by enzyme-linked immunosorbent assay. Immunohistochemical studies showed that the tissue distribution of hDAF in the descendants of both lines was similar to that of endogenous pMCP. The expression level of hDAF on the vascular endothelial cells in Dm1 line was twice that on the corresponding human cells. We tested whether proinflammatory cytokines upregulate an efficiency of pMCP promoter on hDAF expression in transgenic pigs. Although the expression of hDAF on the human endothelial cells increased with a combination of cytokines, tumor necrosis factor alpha and interferon-gamma, no cytokine-induced upregulation was seen in the cells of transgenic pigs. The endothelial cells from transgenic pigs exhibited high resistance to the human serum-mediated cytolysis.  相似文献   
64.
The fungal selectivity of helper effect was revealed using four ectomycorrhizal fungi (Rhizopogon sp., Pisolithus tinctorius, Cenococcum geophilum and Suillus granulatus), and one ectoendomycorrhizal fungus (Wilcoxina mikolae). Previously, we isolated a rhizobacteria, Ralstonia basilensis and Bacillus subtilis, which have the ability to enhance the mycorrhizal symbiosis between S. granulatus and Pinus thunbergii. However, the characteristics of each bacterium on mycorrhizal fungi are still unclear. Therefore, we tried to examine the fungal selectivity of helper effect. A confrontation assay revealed that R. basilensis significantly promoted the in vitro hyphal growth of W. mikolae and S. granulatus, but it had no effect on Rhizopogon sp., P. tinctorius and C. geophilum. These results were consistent with the effects shown by R. basilensis on the mycorrhizal formation of these fungi. On the other hand, B. subtilis promoted the hyphal growth of W. mikolae and C. geophilum but suppressed growth of Rhizopogon sp. B. subtilis significantly stimulated the mycorrhizal formation of S. granulatus. Thus the effects of B. subtilis on hyphal growth and on mycorrhizal formation were inconsistent. These results suggest that R. basilensis and B. subtilis have fungal selective and different mechanisms in their roles as mycorrhiza helper bacteria.  相似文献   
65.
Although insects expand their distribution by various ways, generally only the adult phase has been taken into consideration in research on dispersal. In Megacrania tsudai, it has been proposed that eggs are dispersed through seawater. To test this hypothesis, eggs were treated under normal condition (NC) on wet cotton swabs, and marine condition (MC), floating on salt water for 30, 60, 90, and 365 days. In addition, eggs in the NC and MC treatment groups were dissected every 10 days to verify the developmental stage. The hatching rates in the NC and MC treatment groups were not significantly different among the five treatment groups. However, the egg period, time from laying to hatching, in the MC treatment group was significantly longer than that in any other treatment groups. The egg period was lengthened when the floating period on seawater was longer. The time of the start of egg development was similar in the NC and MC treatment groups, but the developmental speed was slower in the MC treatment group. These results support that M. tsudai can expand its distribution by dispersing its eggs through seawater, probably thanks to specific characteristics of eggs that allow their survival when they float in the sea.  相似文献   
66.
The possibility of preventing the transmission of porcine endogenous retrovirus (PERV) to human cells using short interfering RNAs (siRNA) was investigated. The siRNA for the p30 of PERV gag region was cloned into pSUPER, the polymerase-III H1-RNA gene promoter. A green fluorescence protein (GFP) was also cloned into pSUPER to establish pSXGH. Pig endothelial cells (PEC) were transduced with the LacZ gene by pseudotype infection, and infected with PERV subtype B, resulting in the formation of PEC(LacZ)/PB. The PEC(LacZ)/PB was next transfected with pSXGH-siRNA. The expression of siRNA was provisionally checked by determining the level of expression of GFP. Culture supernatants of infected cells were then inoculated into HEK293 cells. The siRNA clearly destroyed the PERV infectivity of PEC(LacZ)/PB in both transient cell lines and stable clones. Moreover, the decreased levels of mRNA and gag protein were evidenced in the stable clones by real-time PCR and Western blotting, respectively. The final goal of our study was to establish a transgenic pig expressing the siRNA for PERV. The results suggest that siRNA represents a novel approach for controlling PERV infections in clinical xenotransplantation.  相似文献   
67.
Loss of ALS2/alsin function accounts for several recessive motor neuron diseases. ALS2 is a Rab5 activator and its endosomal localization is regulated by Rac1 via macropinocytosis. Here, we show that the pathogenic missense ALS2 mutants fail to be localized to Rac1-induced macropinosomes as well as endosomes, which leads to loss of the ALS2 function as a Rab5 activator on endosomes. Further, these mutants lose the competence to enhance the formation of amphisomes, the hybrid-organelle formed upon fusion between autophagosomes and endosomes. Thus, Rac1-induced relocalization of ALS2 might be crucial to exert the ALS2 function associated with the autophagy-endolysosomal degradative pathway.  相似文献   
68.
Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. A glycoprotein (g) complex that is unique to HHV-6, gH/gL/gQ1/gQ2, is a viral ligand for its cellular receptor, human CD46. However, whether complex formation or one component of the complex is required for CD46 binding and how the complex is transported in cells are open questions. Furthermore, in HHV-6-infected cells the gQ1 protein modified with N-linked glycans is expressed in two forms with different molecular masses: an 80-kDa form (gQ1-80K) and a 74-kDa form (gQ1-74K). Only gQ1-80K, but not gQ1-74K, forms the complex with gQ2, gH, and gL, and this four-component complex is incorporated into mature virions. Here, we characterized the molecular context leading to the maturation of gQ1 by expressing combinations of the individual gH/gL/gQ1/gQ2 components in 293T cells. Surprisingly, only when all four molecules were expressed was a substantial amount of gQ1-80K detected, indicating that all three of the other molecules (gQ2, gH, and gL) were necessary and sufficient for gQ1 maturation. We also found that only the tetrameric complex, and not its subsets, binds to CD46. Finally, a gQ2-null virus constructed in the BAC (bacterial artificial chromosome) system could not be reconstituted, indicating that gQ2 is essential for virus growth. These results show that gH, gL, gQ1, and gQ2 are all essential for the trafficking and proper folding of the gH/gL/gQ1/gQ2 complex and, thus, for HHV-6 infection.  相似文献   
69.
UDP‐glucose: anthocyanidin 3‐O‐glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP‐glucose to anthocyanidins such as delphinidin. After the acylation of the 3‐O‐glucosyl residue, the 3′‐ and 5′‐hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor‐recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin‐ and flavonol‐acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3‐hydroxyl groups of the acceptor substrates were located at hydrogen‐bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3‐hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5‐ and 7‐hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号