首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   47篇
  国内免费   1篇
  2024年   1篇
  2023年   11篇
  2022年   21篇
  2021年   26篇
  2020年   18篇
  2019年   15篇
  2018年   21篇
  2017年   22篇
  2016年   24篇
  2015年   37篇
  2014年   45篇
  2013年   62篇
  2012年   61篇
  2011年   54篇
  2010年   39篇
  2009年   30篇
  2008年   52篇
  2007年   43篇
  2006年   29篇
  2005年   25篇
  2004年   31篇
  2003年   20篇
  2002年   14篇
  2001年   1篇
  2000年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有731条查询结果,搜索用时 562 毫秒
211.
CD133 is a cellular surface protein that has been reported to be a cancer stem cell marker, and thus it is considered to be a potential target for cancer treatment. However, the mechanism regulating CD133 expression is not yet understood. In this study, we analyzed the activity of five putative promoters (P1–P5) of CD133 in human embryonic kidney (HEK) 293 cells and colon cancer cell line WiDr, and found that the activity of promoters, particularly of P5, is elevated by overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α). Deletion and mutation analysis identified one of the two E-twenty six (ETS) binding sites (EBSs) in the P5 region as being essential for its promoter activity induced by HIF-1α and HIF-2α. In addition, a chromatin imunoprecipitation assay demonstrated that HIF-1α and HIF-2α bind to the proximal P5 promoter at the EBSs. The immunoprecipitation assay showed that HIF-1α physically interacts with Elk1; however, HIF-2α did not bind to Elk1 or ETS1. Furthermore, knockdown of both HIF-1α and HIF-2α resulted in a reduction of CD133 expression in WiDr. Taken together, our results revealed that HIF-1α and HIF-2α activate CD133 promoter through ETS proteins.  相似文献   
212.
Over 100 mutants in superoxide dismutase 1 (SOD1) are reported in familial amyotrophic lateral sclerosis (ALS). However, the precise mechanism by which they are degraded through a ubiquitin-proteasomal pathway (UPP) remains unclear. Here, we report that heat-shock protein (Hsp) or heat-shock cognate (Hsc)70, and the carboxyl terminus of the Hsc70-interacting protein (CHIP), are involved in proteasomal degradation of mutant SOD1. Only mutant SOD1 interacted with Hsp/Hsc70 in vivo, and in vitro experiments revealed that Hsp/Hsc70 preferentially interacted with apo-SOD1 or dithiothreitol (DTT)-treated holo-SOD1, compared with metallated or oxidized forms. CHIP, a binding partner of Hsp/Hsc70, interacted only with mutant SOD1 and promoted its degradation. Both Hsp70 and CHIP promoted polyubiquitination of mutant SOD1-associated molecules, but not of mutant SOD1, indicating that mutant SOD1 is not a substrate of CHIP. Moreover, mutant SOD1-associated Hsp/Hsc70, a known substrate of CHIP, was polyubiquitinated in vivo, and polyubiquitinated Hsc70 by CHIP interacted with the S5a subunit of the 26S proteasome in vitro. Furthermore, CHIP was predominantly expressed in spinal neurons, and ubiquitinated inclusions in the spinal motor neurons of hSOD1(G93A) transgenic mice were CHIP-immunoreactive. Taken together, we propose a novel pathway in which ubiquitinated Hsp/Hsc70 might deliver mutant SOD1 to, and facilitate its degradation, at the proteasome.  相似文献   
213.
Strain YA was newly isolated from an enrichment culture of river sediment and was identified as Janibacter sp. It was able to utilize dibenzofuran as the sole source of carbon and energy. Strain YA degraded > 90% of 1-chloro-dibenzo-p-dioxin (1-CDD) and > 80% of 2-chloro-dibenzo-p-dioxin in 18 hours with each initial concentration at 40 mg/L. A novel metabolite, 2-chloro-2′,6-dihydroxydiphenylether, was observed in 1-CDD degradation. From the metabolites detected by gas chromatography–mass spectrometry, strain YA was supposed to have at least two types of oxidation pathways in 1-CDD degradation.  相似文献   
214.
215.
Factors affecting the efficiency of producing transgenic rats by intracytoplasmic sperm injection (ICSI)-mediated DNA transfer were investigated. Epididymal spermatozoa from Sprague-Dawley (SD) rats were sonicated and/or frozen-thawed for cutting the tail and membrane disruption. The sperm heads were exposed for 1 min to different concentrations (0.02-2.5 microg/ml) of 3.0 kb enhanced green fluorescent protein (EGFP) DNA solution, and then microinjected into the denuded F1 hybrid (Donryu x LEW) rat oocytes. The optimal concentration of EGFP DNA solution was 0.1 microg/ml, as determined by the in vitro developmental competence into morulae/blastocysts of the ICSI oocytes and the EGFP expression of the resultant embryos. The efficiency of producing transgenic rat offspring (per transferred zygote) was 2.8%, 1.6%, and 3.3% in the oocytes injected with sonicated, frozen-thawed, and sonicated + frozen-thawed sperm heads, respectively. The founder transgenic rats carrying the EGFP gene transmitted their transgenes to their progeny according to the Mendelian fashion, suggesting the stable incorporation of the transgenes into the rat genomes. Four rat strains (F344, LEW, Donryu, and SD) were compared for their suitability as sperm/oocyte donors for the production of transgenic rats by ICSI with sonicated, frozen-thawed and solution of EGFP DNA-exposed sperm heads. The efficiency of producing transgenic rats in the SD strain (8.2%) was higher than that in the LEW strain (0.9%), while those in the F344 and Donryu strains (4.3%-4.4%) were intermediate. One plasmid DNA (Fyn, 5.0 kb) and two BAC DNA (BAC/Fyn, 208 kb; Svet1/IRES-Cre, 186 kb) were successfully introduced into the SD rat genomes via ICSI, with the producing efficiencies of 2.8%, 0.9%, and 2.4%, respectively.  相似文献   
216.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   
217.
Hupehsuchia is a group of enigmatic Triassic marine reptiles that is known exclusively from two counties in Hubei Province, China. One of the common features of the group was a modestly long neck with nine to ten cervical vertebrae. We report a new species of Hupehsuchia, Eohupehsuchus brevicollis gen. et sp. nov., which for the first time shows a short neck in this group, with six cervicals. The configuration of the skull roof in Eohupehsuchus is also unique among Hupehsuchia, with narrow frontals and posteriorly shifted parietals, warranting recognition of a new species. The taxon superficially resembles Nanchangosaurus in retaining hupehsuchian plesiomorphies, such as low neural spines and small body size. However, its limbs are well-developed, unlike in Nanchangosaurus, although the latter genus is marginally larger in body length. Thus, the individual is unlikely to be immature. Also, Eohupehsuchus shares a suite of synapomorphies with Hupehsuchus, including the second and third layers of dermal ossicles above the dorsal neural spines. A phylogenetic analysis suggests that the new species is not the most basal hupehsuchian despite its short neck, and instead forms the sister taxon of Hupehsuchidae. Until recently, Hupehsuchia contained only two monotypic genera. Now there are at least four genera among Hupehsuchia, and the undescribed diversity is even higher. The left forelimb of the only specimen is incomplete, ending with broken phalanges distally. The breakage could only have occurred pre-burial. The individual may have been attacked by a predator and escaped, given that scavenging is unlikely.  相似文献   
218.
Haloperoxidases are useful oxygenases involved in halogenation of a range of water‐insoluble organic compounds and can be used without additional high‐cost cofactors. In particular, organic solvent‐stable haloperoxidases are desirable for enzymatic halogenations in the presence of organic solvents. In this study, we adopted a directed evolution approach by error‐prone polymerase chain reaction to improve the organic solvent‐stability of the homodimeric BPO‐A1 haloperoxidase from Streptomyces aureofaciens. Among 1,000 mutant BPO‐A1 haloperoxidases, an organic solvent‐stable mutant OST48 with P123L and P241A mutations and a high active mutant OST959 with H53Y and G162R mutations were selected. The residual activity of mutant OST48 after incubation in 40% (v/v) 1‐propanol for 1 h was 1.8‐fold higher than that of wild‐type BPO‐A1. In addition, the OST48 mutant showed higher stability in methanol, ethanol, dimethyl sulfoxide, and N,N‐dimethylformamide than wild‐type BPO‐A1 haloperoxidase. Moreover, after incubation at 80°C for 1 h, the residual activity of mutant OST959 was 4.6‐fold higher than that of wild‐type BPO‐A1. Based on the evaluation of single amino acid‐substituted mutant models, stabilization of the hydrophobic core derived from P123L mutation and increased numbers of hydrogen bonds derived from G162R mutation led to higher organic solvent‐stability and thermostability, respectively. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:917–924, 2015  相似文献   
219.
Bacterial polyester polyhydroxyalkanoates (PHAs) have been produced in engineered Escherichia coli, which turned into an efficient and versatile platform by applying metabolic and enzyme engineering approaches. The present study aimed at drawing out the latent potential of this organism using genome-wide mutagenesis. To meet this goal, a transposon-based mutagenesis was carried out on E. coli, which was transformed to produce poly(lactate-co-3-hydroxybutyrate) from glucose. A high-throughput screening of polymer-accumulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold higher quantity of polymer without severe disadvantages in the cell growth and monomer composition of the polymer. The transposon was inserted into the locus within the gene encoding MtgA that takes part, as a non-lethal component, in the formation of the peptidoglycan backbone. Accordingly, the mtgA-deleted strain E. coli JW3175, which was a derivate of superior PHA-producing strain BW25113, was examined for polymer production, and exhibited an enhanced accumulation of the polymer (7.0 g/l) compared to the control (5.2 g/l). Interestingly, an enlargement in cell width associated with polymer accumulation was observed in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared to the control. This result suggests that the increase in volumetric capacity for accumulating intracellular material contributed to the enhanced polymer production. The mtgA deletion should be combined with conventional engineering approaches, and thus, is a promising strategy for improved production of intracellularly accumulated biopolymers.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号