首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   44篇
  国内免费   1篇
  2023年   11篇
  2022年   21篇
  2021年   26篇
  2020年   18篇
  2019年   14篇
  2018年   21篇
  2017年   19篇
  2016年   24篇
  2015年   37篇
  2014年   47篇
  2013年   64篇
  2012年   61篇
  2011年   55篇
  2010年   39篇
  2009年   30篇
  2008年   53篇
  2007年   43篇
  2006年   30篇
  2005年   25篇
  2004年   33篇
  2003年   20篇
  2002年   13篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有734条查询结果,搜索用时 15 毫秒
51.
In most female moths, pheromone biosynthesis activating neuropeptide (PBAN) regulates sex pheromone production by stimulating an influx of extracellular Ca(2+). Little is known about the plasma membrane channel or how the PBAN stimulus is communicated to the channel. Fluorescent Ca(2+) imaging techniques confirmed PBAN-induced Ca(2+) influx in the silkworm, Bombyx mori, and showed that the PBAN response is reduced with repeated stimulation. Compounds known to impact Ca(2+) signaling were examined for their effects on sex pheromone production. These experiments demonstrated that the PBAN signal is likely mediated by a store-operated channel (SOC). SOC blockers, SKF-96365 and 2-aminoethoxydiphenyl borate, abolished sex pheromone production, as did flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thapsigargin mimicked the pheromonotropic effects of PBAN. Similar results were seen when PBAN-induced lipase activity was assayed. Conversely, 1-oleoyl-2-acetyl-sn-glycerol and arachidonic acid, activators of diacylglycerol-dependent Ca(2+) channels, had no effect on bombykol production.  相似文献   
52.
Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan®) and anti-Her2/neu IgG1 trastuzumab (Herceptin®). ADCC is triggered upon the binding of lymphocyte receptors (FcγRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an α-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.  相似文献   
53.
Cathepsin E (CE) is an intracellular aspartic proteinase implicated in various physiological and pathological processes, yet its actual roles in vivo remain elusive. To assess the physiological significance of CE expression in tumor cells, human CE was stably expressed in human prostate carcinoma ALVA101 cells expressing very little CE activity. Tumor growth in nude mice with xenografted ALVA101/hCE cells was slower than with control ALVA101/mock cells. Angiogenesis antibody array and ELISA assay showed that this was partly due to the increased expression of some antiangiogenic molecules including interleukin 12 and endostatin in tumors induced by CE expression. In vitro studies also demonstrated that, among the cathepsins tested, CE most efficiently generated endostatin from the non-collagenous fragment of human collagen XVIII at mild acidic pH. Histological examination revealed that tumors formed by ALVA101/hCE cells were partitioned by well-developed membranous structures and covered with thickened, well-stratified hypodermal tissues. In addition, both the number and extent of activation of tumor-infiltrating macrophages were more profound in ALVA101/hCE compared to ALVA101/mock tumors. The chemotactic response of macrophages to ALVA101/hCE cells was also higher than that to ALVA/mock cells. These results thus indicate that CE expression in tumor cells induces tumor growth arrest via inhibition of angiogenesis and enhanced immune responses.  相似文献   
54.
Purpose

Assessing the potential impacts (characterization) of mineral resource use in life cycle impact assessment (LCIA) has long been debated. One of the most crucial challenges in the characterization models for mineral resource use is the consideration of the changing demand and availability of in-use stocks in the future, which is relevant to the global population and economy growth as well as the increasing low-carbon technologies. We propose an extended characterization model to assess the potential impacts for arbitrary time horizons, considering future demand changes and the availability of in-use stock: temporally explicit abiotic depletion potential (TADP).

Methods

The TADP was developed based on abiotic depletion potential (ADP), which is a widely used characterization model for mineral resource use. While the ADP assesses the potential impacts of mineral resource use based on a natural stock estimate and the current extraction rate, the TADP adopts an average extraction rate for arbitrary time horizons. The average extraction rate was estimated using material flow analysis considering future demand changes and recycling under the five shared socioeconomic pathways (SSPs). TADPs were calculated for six common metals: aluminum, copper, iron, lead, nickel, and zinc.

Results and discussion

As a result of calculating TADPs for the term by 2050 (TADP2050), compared to iron, all other metals showed larger values of characterization factors for all SSPs than the original ADPs. The TADP2050 of copper exhibited the largest difference with ADP among the six metals (approximately 1.9 times), which is mainly attributed to future demand growth. On the other hand, for the longer time perspective, the TADP2100 of lead and zinc exhibited larger differences with ADP than copper (approximately 2.8 times for zinc), which is mainly due to a relatively shorter lifetime for lead and a lower recycling rate for zinc. This suggests that the relative significance of the characterization factors of metals varies depending on the temporal perspective.

Conclusions

With the proposed characterization model, the potential impacts of mineral resource use can be assessed reflecting future situations for the selected time horizons. The results demonstrate that the consideration of future situations greatly influences the relative significance of the potential impacts of using different mineral resources in the results of LCIA studies. By expanding the coverage of mineral resources and future scenario analysis to other relevant factors, the TADP model can improve the robustness of the assessment and further support decision-making towards sustainable resource management.

  相似文献   
55.
56.
57.
In this paper, we present a method of fabricating a rigid antibody-immobilized surface using electric activation of a glutaraldehyde (GA)-modified aminopropylsilyl surface for stable antibody-modified field effect transistors (FETs). Electric activation of the GA-modified gate surface of the FET reduces Schiff bases, which are easily hydrolyzed and collapsed, formed between GA and 3-aminopropyltriethoxysilane, resulting in preventing the immobilized antibodies from desorbing from the surface. The lack of Raman peaks that could be assigned to a Schiff base after the electrical activation of the GA-modified surface indicated that the electric activation had reduced the Schiff base. The use of the antibody-modified FETs has three advantages for the detection of antigens: increased sensitivity, distinct recognition ability, and improved reproducibility. A tumor marker, alpha-fetoprotein (AFP), was quantitatively detected up to a concentration of 10 ng/mL using the antibody-modified FET. The detection ability of the FET accomplished a cutoff value of hepatic cancer. The quantitative detection of AFP in a solution with contaminating proteins was also demonstrated. This electric activation method is applicable to other antibody-modified FETs.  相似文献   
58.
Since certain missense mutations in the N-terminal part of filamin A (FLNA) cause inherited skeletal malformation, we screened for proteins that bind to this part of FLNA. We identified two nuclear proteins that are specifically associated with the N-terminal region of FLNA. This suggests more extensive nuclear function of filamin than expected.  相似文献   
59.
The accuracy of estimating deer density using the fecal pellet count method is greatly limited by variability of the fecal decomposition rate. The fecal accumulation rate technique can avoid the issue of decomposition rate. However, the precision of this technique is not clear when the decomposition rate is relatively high, such as in Japanese forests. We estimated deer population densities on Yakushima Island by the fecal accumulation rate technique and compared them between seasons. The estimated densities were similar to reported estimates, and did not differ seasonally, in accord with reports that deer on Yakushima do not migrate seasonally. Thus, we conclude that the fecal accumulation rate technique is applicable in Japanese forests.  相似文献   
60.
In recent years, the effects of smoking and excessive alcohol consumption on immune function have been studied, due to a high prevalence of infection or cancer in heavy drinkers, and the combination of smoking and drinking was considered to be a carcinogenic risk. However, the effect of smoking and drinking on systemic immune function has yet to be clearly understood. In this study, we investigated neutrophil functions (reactive oxygen species (ROS) productive activity, phagocytic ability and serum opsonic activity) and their relationship with alcohol consumption or amount of smoking. In total there were 731 male and female adult subjects who participated in the Iwaki Health Promotion Project in 2005. Multiple regression analysis showed a trend of increased ROS production in male subjects and a statistically significant decrease was observed in phagocytic activity caused by smoking in female subjects. In other words, oxidative stress caused by smoking in male subjects may be involved in ROS production from neutrophils. Decreased phagocytic activity of neutrophils caused by smoking suggests that host defense functions were impaired in female subjects. A relationship between neutrophil functions and the amount of alcohol consumption was not observed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号