首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1224篇
  免费   75篇
  国内免费   1篇
  2023年   11篇
  2022年   19篇
  2021年   33篇
  2020年   23篇
  2019年   18篇
  2018年   30篇
  2017年   26篇
  2016年   37篇
  2015年   51篇
  2014年   61篇
  2013年   89篇
  2012年   110篇
  2011年   84篇
  2010年   58篇
  2009年   50篇
  2008年   74篇
  2007年   75篇
  2006年   59篇
  2005年   45篇
  2004年   52篇
  2003年   40篇
  2002年   29篇
  2001年   15篇
  2000年   27篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   10篇
  1992年   17篇
  1991年   13篇
  1990年   12篇
  1989年   11篇
  1988年   5篇
  1987年   13篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1974年   6篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
排序方式: 共有1300条查询结果,搜索用时 218 毫秒
981.
As the Lol system, which is involved in localization of lipoproteins, is essential for Escherichia coli growth and widely conserved among gram-negative bacteria, it is considered to be a promising target for the development of anti-gram-negative bacterial agents. However, no high-throughput screening method has so far been developed to screen for Lol system inhibitors. By combining three assay systems (anucleate cell blue assay, Lpp assay, and LolA-dependent release inhibition assay) and a drug susceptibility test, we have successfully developed a new screening method for identification of compounds that inhibit the Lol system. Using this new screening method, we screened 23,600 in-house chemical compounds and found 2 Lol system inhibitors. We therefore conclude that our new screening method can efficiently identify new antibacterial agents that target the Lol system.  相似文献   
982.
983.
As a continuation to our previous work concerning antitumor benzimidazoles, we have synthesized series of new derivatives of 2-(1-benzyl-2-methyl-1H-benzimidazol-5-ylimino)-3-(substituted)-thiazolidin-4-one (6a-e), 3-(2-methyl-1H-benzimidazol-5-yl)-2-substituted-thiazolidin-4-one (9a-f) and we have studied their inhibitory activity against the Epstein-Barr virus-early antigen (EBV-EA) activation introduced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Compound 6d was found to be significantly active and compounds 5a and 6e were also active.  相似文献   
984.
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available.In photosynthesis, photon energy absorbed by PSI and PSII in thylakoid membranes oxidizes the reaction center chlorophylls (Chls), P700 in PSI and P680 in PSII, and drives the photosynthetic electron transport (PET) system. In PSII, water is oxidized to oxygen as the oxidized P680 accepts electrons from water. These electrons then reduce the cytochrome b6/f complex through plastoquinone (PQ) in the thylakoid membranes. Photooxidized P700 in PSI accepts electrons from the reduced cytochrome b6/f complex through plastocyanin or cytochrome c6. Electrons released in the photooxidation of P700 are used to produce NADPH through ferredoxin and ferredoxin NADP+ reductase. Thus, electrons flow from water to NADPH in the so-called photosynthetic linear electron flow (LEF). Importantly, LEF induces a proton gradient across the thylakoid membranes, which provides the driving force for ATP production by ATP synthases in the thylakoid membranes. NADPH and ATP serve as chemical energy donors in the photosynthetic carbon reduction cycle (Calvin cycle).It recently has been proposed that, in cyanobacteria, the photorespiratory carbon oxidation cycle (photorespiration) functions simultaneously with the Calvin cycle to recover carbon for the regeneration of ribulose-1,5-bisphosphate, one of the substrates of Rubisco (Hagemann et al., 2013). Rubisco catalyzes the primary reactions of carbon reduction as well as oxidation cycles. However, the presence of a specific carbon concentration mechanism (CCM) in cyanobacteria had been thought to prevent the operation of photorespiration. CCM maintains a high concentration of CO2 around Rubisco so that the oxygenase activity of Rubisco is suppressed (Badger and Price, 1992). However, recent studies on mutants deficient in photorespiration enzymes have shown that photorespiration functions, particularly under CO2-limited conditions, in cyanobacteria as it does in higher plants (Eisenhut et al., 2006, 2008).Decreased consumption of NADPH under CO2-limited or high-light conditions causes electrons to accumulate in the PET system. As a result, the photooxidation and photoreduction cycles of the reaction center Chls in PSI and PSII become uncoupled from the production of NADPH, inducing alternative electron flow (AEF) pathways (Mullineaux, 2014). In cyanobacteria, several AEFs that differ from those in higher plants are proposed to function as electron sinks (Mullineaux, 2014). Electrons accumulated in the PET system flow to oxygen through FLAVODIIRON1 (FLV1) and FLV3 proteins in PSI and the terminal oxidase, cytochrome c oxidase complex, and cytochrome bd-quinol oxidase (Pils and Schmetterer, 2001; Berry et al., 2002; Helman et al., 2003; Nomura et al., 2006; Lea-Smith et al., 2013). Cyanobacterial FLV comprises a diiron center, a flavodoxin domain with an FMN-binding site, and a flavin reductase domain (Vicente et al., 2002). In Synechocystis sp. PCC 6803, Helman et al. (2003) identified four genes encoding FLV1 to FLV4 and showed that FLV1 and FLV3 were essential for the photoreduction of oxygen by PSI. FLV1 and FLV3 were proposed to function as a heterodimer (Allahverdiyeva et al., 2013). FLV2/4 have been proposed to function in energy dissipation associated with PSII (Zhang et al., 2012). In addition, hydrogenases convert H+ to H2 with NADPH as an electron donor (Appel et al., 2000). Furthermore, Flores et al. (2005) suggested that the nitrate assimilation pathway functions in AEF when the cells live in medium containing nitrate.To elucidate the physiological functions of these AEFs, evaluation of the presence and capacity of each AEF pathway is required. Therefore, in vivo analyses of electron fluxes are essential. We had found that an electron flow uncoupled from photosynthetic oxygen evolution functioned under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 but not in Synechococcus elongatus PCC 7942 (Hayashi et al., 2014), indicating that an AEF operated in Synechocystis sp. PCC 6803. This AEF was induced in high-[CO2]-grown Synechocystis sp. PCC 6803 during the transition from CO2-saturated photosynthesis to CO2-limited photosynthesis (Hayashi et al., 2014). In contrast, in Synechocystis sp. PCC 6803 grown at ambient CO2 concentration, AEF was detected immediately following the transition to CO2-limited photosynthesis (Hayashi et al., 2014), suggesting that AEF was already induced under ambient atmospheric conditions.The expression of the AEF activity observed under CO2-limited photosynthesis required the presence of oxygen in Synechocystis sp. PCC 6803 (Hayashi et al., 2014). In Synechocystis sp. PCC 6803, FLV1/3 were proposed to catalyze the photoreduction of oxygen (Helman et al., 2003). However, Hayashi et al. (2014) found no evidence that FLV1/3 operated under CO2-limited photosynthesis: a mutant Synechocystis sp. PCC 6803 deficient in FLV1/3 maintained almost constant electron flux under CO2-limited photosynthesis after the transition from CO2-saturated conditions. Thus, the postulated photoreduction of oxygen by FLV1/3 was not responsible for the electron flux observed under CO2-limited photosynthesis in Synechocystis sp. PCC 6803.In this study, we aimed to elucidate the molecular mechanism of the oxygen-dependent AEF functioning under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. The possibility that FLV2 and FLV4 catalyze the photoreduction of oxygen under CO2-limited photosynthesis could not be excluded, given that AEF in high-[CO2]-grown Synechocystis sp. PCC 6803 was induced following the transition to CO2-limited photosynthesis (Hayashi et al., 2014). Both FLV2 and FLV4 are predicted to possess oxidoreductase motifs, similar to FLV1 and FLV3 (Helman et al., 2003; Zhang et al., 2012). Furthermore, the expression of two FLV genes (flv2 and flv4) was enhanced under low-[CO2] conditions (Zhang et al., 2009). Zhang et al. (2012) proposed that FLV2 and FLV4 did not donate electrons to oxygen on the basis of the finding that the Synechocystis sp. PCC 6803 mutants deficient in FLV1/3 showed no light-dependent oxygen uptake (Helman et al., 2003). However, Helman et al. (2003) cultivated Synechocystis sp. PCC 6803 strains deficient in FLV1 and FLV3 proteins under high-[CO2] conditions, and we cannot exclude the possibility that the FLV2 and FLV4 proteins were not produced in the studied cells. Taken together, it seems plausible that FLV2 and FLV4 mediate oxygen-dependent AEF following the transition to CO2-limited photosynthesis. To evaluate this possibility, we constructed Synechocystis sp. PCC 6803 mutants deficient in flv2 and flv4 and measured their oxygen evolution and Chl fluorescence simultaneously. The mutants showed suppressed LEF after transition to CO2-limited photosynthesis, similar to S. elongatus PCC 7942. We also tested the possibility that photorespiration functions as an electron sink under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. A recent study revealed photorespiratory oxygen uptake in a flv1/3 mutant under CO2-depleted conditions (Allahverdiyeva et al., 2011). In this study, we found that the quantum yield of photosystem II [Y(II)] of mutants deficient in genes encoding proteins that function in photorespiration was similar to that of wild-type Synechocystis sp. PCC 6803. Thus, FLV2 and FLV4 appear to function in the oxygen-dependent AEF under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. This inference is further supported by the lack of FLV2 and FLV4 homologs in the genome of S. elongatus PCC 7942 (Bersanini et al., 2014). In addition, we found oxygen-reducing activities of recombinant glutathione S-transferase (GST)-FLV4 fusion protein, similar to those of recombinant FLV3 protein (Vicente et al., 2002). In light of these results, we discuss the molecular mechanism of the oxygen-dependent AEF under CO2-limited photosynthesis and the physiological function of FLV proteins in Synechocystis sp. PCC 6803.  相似文献   
985.
Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. DS and Dahl salt-resistant (DR) rats (8 weeks old) were divided into three different groups, respectively: (1) low sodium diet (0.005% NaCl), (2) normal sodium diet (0.3% NaCl), and (3) high sodium diet (8% NaCl). The high sodium diet for 4 weeks in DS rats elevated the systolic blood pressure, but did not in any other groups. The expression of alpha-ENaC mRNA in DS rats was abnormally increased by high sodium diet in contrast to DR rats, while it was normally increased by low sodium diet in DS rats similar to DR rats. The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.  相似文献   
986.
987.
We describe a methodology for quick development of fluorescent probes with the desired potency for the target of interest by using a method of parallel synthesis, termed as Parallel Fluorescent Probe Synthesis (Parallel-FPS). BODIPY FL propionic acid 1 is a widely used fluorophore, but it is difficult to prepare a large amount of 1, which hinders its use in parallel synthesis. Optimization of a synthetic scheme enabled us to obtain 50 g of 1 in one batch. With this large quantity of 1 in hand, we performed Parallel-FPS of BODIPY FL-labeled ligands for estrogen related receptor-α (ERRα). An initial trial of the parallel synthesis with various linkers provided a potent ligand for ERRα (Reporter IC50 = 80 nM), demonstrating the usefulness of Parallel-FPS.  相似文献   
988.
The autonomic nervous system consists of sympathetic and parasympathetic nerves, which functionally antagonize each other to control physiology and homeostasis of organs. However, it is largely unexplored how the autonomic nervous system is established during development. In particular, early formation of parasympathetic network remains elusive because of its complex anatomical structure. To distinguish between parasympathetic (cholinergic) and sympathetic (adrenergic) ganglia, vesicular acetylcholine transporter (VAChT) and choline O‐acetyltransferase (ChAT), proteins associated with acetylcholine synthesis, are known to be useful markers. Whereas commercially available antibodies against these proteins are widely used for mammalian specimens including mice and rats, these antibodies do not work satisfactorily in chickens, although chicken is an excellent model for the study of autonomic nervous system. Here, we newly raised antibodies against chicken VAChT and ChAT proteins. One monoclonal and three polyclonal antibodies for VAChT, and one polyclonal antibody for ChAT were obtained, which were available for Western blotting analyses and immunohistochemistry. Using these verified antibodies, we detected cholinergic cells in Remak ganglia of autonomic nervous system, which form in the dorsal aspect of the digestive tract of chicken E13 embryos. The antibodies obtained in this study are useful for visualization of cholinergic neurons including parasympathetic ganglia.  相似文献   
989.
We describe a new species of Thylacocephala, Ankitokazocaris chaohuensis sp. nov., from the Upper Spathian (Early Triassic) of Chaohu, Anhui Province, China. It is diagnosed by its unique outline of the carapace, small size, and the narrow and asymmetrical anterior notch. Fine preservation reveals at least 14 posterior appendages, traces of gills and raptorial appendages, and remains of trunk segments and muscles in Ankitokazocaris for the first time. This is the first report of Thylacocephala from the Early Triassic of China, confirming the wide distribution of this group in the Tethys. The new species is closer to the type species of Ankitokazocaris, which is stratigraphically somewhat older, than to a recently described almost coeval species from Japan.  相似文献   
990.
To analyze the mechanisms responsible for thymocyte proliferation, maturation and migration in the thymus, the rat thymus just after, and recovering from irradiation was studied morphologically. The vascular structures of the rat thymus after a radiation dose of 6 Gy were found to be destroyed on day 3, but had recovered to almost normal by day 7, suggesting that the abrupt recovery of thymus structure after irradiation was due primarily to this change in vascular structure. Furthermore, the epithelial tissues in the thymic cortex appeared to contribute to this abrupt proliferation, and possibly to the abrupt maturation of thymocytes, while medullary epithelial tissues remained sparse and appeared inactive for a relatively long period. These findings are considered important for understanding the interrelationship between thymic epithelial cells and thymocytes with respect to thymocyte proliferation, maturation and migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号