首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   75篇
  国内免费   1篇
  2023年   11篇
  2022年   23篇
  2021年   33篇
  2020年   23篇
  2019年   18篇
  2018年   30篇
  2017年   26篇
  2016年   37篇
  2015年   51篇
  2014年   61篇
  2013年   89篇
  2012年   110篇
  2011年   84篇
  2010年   58篇
  2009年   50篇
  2008年   74篇
  2007年   75篇
  2006年   59篇
  2005年   45篇
  2004年   52篇
  2003年   40篇
  2002年   29篇
  2001年   15篇
  2000年   27篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   10篇
  1992年   17篇
  1991年   13篇
  1990年   12篇
  1989年   11篇
  1988年   5篇
  1987年   13篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1974年   6篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
排序方式: 共有1304条查询结果,搜索用时 31 毫秒
961.
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects.  相似文献   
962.
Previous studies showed that efforts to further elevate starch synthesis in rice (Oryza sativa) seeds overproducing ADP-glucose (ADPglc) were prevented by processes downstream of ADPglc synthesis. Here, we identified the major ADPglc transporter by studying the shrunken3 locus of the EM1093 rice line, which harbors a mutation in the BRITTLE1 (BT1) adenylate transporter (OsBt1) gene. Despite containing elevated ADPglc levels (approximately 10-fold) compared with the wild-type, EM1093 grains are small and shriveled due to the reduction in the amounts and size of starch granules. Increases in ADPglc levels in EM1093 were due to their poor uptake of ADP-[14C]glc by amyloplasts. To assess the potential role of BT1 as a rate-determining step in starch biosynthesis, the maize ZmBt1 gene was overexpressed in the wild-type and the GlgC (CS8) transgenic line expressing a bacterial glgC-TM gene. ADPglc transport assays indicated that transgenic lines expressing ZmBT1 alone or combined with GlgC exhibited higher rates of transport (approximately 2-fold), with the GlgC (CS8) and GlgC/ZmBT1 (CS8/AT5) lines showing elevated ADPglc levels in amyloplasts. These increases, however, did not lead to further enhancement in seed weights even when these plant lines were grown under elevated CO2. Overall, our results indicate that rice lines with enhanced ADPglc synthesis and import into amyloplasts reveal additional barriers within the stroma that restrict maximum carbon flow into starch.Cereal grains contribute a significant portion of worldwide starch production. Unlike other plant tissue, starch biosynthesis in the endosperm storage organ of cereal grains is unique in its dependence on two ADP-Glc pyrophosphorylase (AGPase) isoforms (Denyer et al., 1996; Thorbjørnsen et al., 1996; Sikka et al., 2001), a major cytosolic enzyme and a minor plastidial one, to generate ADP-glucose (ADPglc), the sugar nucleotide utilized by starch synthases in the amyloplast (Cakir et al., 2015). The majority of ADPglc in cereal endosperm is generated in the cytosol from AGPase (Tuncel and Okita, 2013) as well as by Suc synthase (Tuncel and Okita, 2013; Bahaji et al., 2014) and subsequently transported into amyloplasts by the BRITTLE-1 (BT1) protein located at the plastid envelope (Cao et al., 1995; Shannon et al., 1998).The Bt1 gene, first identified in maize (Zea mays; Mangelsdorf, 1926) and isolated by Sullivan et al. (1991), encodes a major amyloplast membrane protein ranging from 39 to 44 kD (Cao et al., 1995). The BT1 protein and its homologs belong to the mitochondrial carrier family (Sullivan et al., 1991; Haferkamp, 2007), which has a diverse range of substrates (Patron et al., 2004; Leroch et al., 2005; Kirchberger et al., 2008). The assignment of BT1 protein as the ADPglc transporter in cereal endosperms was first proposed by Sullivan et al. (1991), and then it was characterized based on the increased ADPglc levels and reduced ADPglc import rate in endosperms of BT1-deficient maize and barley (Hordeum vulgare) mutants (Tobias et al., 1992; Shannon et al., 1996, 1998; Patron et al., 2004). Biochemical transport studies of the maize BT1 showed that it imported ADPglc by counter exchanging with ADP (Kirchberger et al., 2007). The wheat (Triticum aestivum) BT1 homolog also transports ADPglc but has similar affinities for ADP and AMP as the counter-exchange substrate (Bowsher et al., 2007).Evidence from previous studies by our laboratory (Sakulsingharoj et al., 2004; Nagai et al., 2009) suggested the potential role of BT1 as well as other downstream processes as a rate-limiting step in starch biosynthesis in the transgenic rice (Oryza sativa) GlgC (CS8) lines overexpressing an up-regulated AGPase (Escherichia coli glgC-TM). In GlgC (CS8) rice lines, grain weights (starch) are elevated up to 15% compared with wild-type plants, indicating that the AGPase-catalyzed reaction is a rate-limiting step in starch biosynthesis under normal conditions. When transgenic GlgC (CS8) plants were grown under elevated CO2 levels, no further increases in grain weight were evident compared with those grown at ambient CO2. As Suc levels are elevated in leaf blades, leaf sheaths, culms (Rowland-Bamford et al., 1990), and peduncle exudates (Chen et al., 1994) in rice plants grown under elevated CO2, developing GlgC (CS8) grains were unable to convert the increased levels of sugars into starch. This lack of increase indicated that the AGPase-catalyzed reaction (ADPglc synthesis) was no longer rate limiting and that one or more downstream processes regulated carbon flux from source tissues in developing GlgC (CS8) endosperm (Sakulsingharoj et al., 2004). This view is also supported by a subsequent metabolite study in which several GlgC (CS8) lines were found to contain up to 46% higher ADPglc levels than wild-type plants (Nagai et al., 2009). As this increase in ADPglc levels was nearly 3-fold higher than the increase in grain weight, starch biosynthesis is saturated with respect to ADPglc levels and carbon flow into starch is restricted by one or more downstream steps. Potential events that may limit the utilization of ADPglc in starch in GlgC (CS8) lines are the import of this sugar nucleotide via the BT1 transporter into amyloplasts and/or the utilization of ADPglc by starch synthases. Mutant analysis of the two major starch synthases indicated no significant impact on grain weight when one of these starch synthases was nonfunctional, suggesting that this enzyme activity, contributed by multiple enzyme isoforms, is present at excessive levels (Fujita et al., 2006, 2007). Therefore, we suspected that BT1 is the likely candidate limiting carbon flow into starch in GlgC (CS8) endosperms.The aim of this study was to investigate the role of BT1 in mediating the transport of ADPglc into amyloplast and to determine whether this transport activity is rate limiting in rice endosperm. In order to address these questions, we show that BT1 is the major transporter of ADPglc by analysis of the EM1093 rice line, which contains a mutation at the shrunken3 (shr3) locus and, specifically, in the OsBt1-1 gene. Second, we assessed the impact of the expression of the maize ZmBt1 gene in wild-type and GlgC (CS8) seeds to determine the potential limiting role of BT1 transport activity on starch biosynthesis. Our results indicate that BT1 is essential for starch synthesis but is not rate limiting and that one or more stroma-localized processes limit maximum carbon flow into starch.  相似文献   
963.
Aplog-1 is a simplified analog of debromoaplysiatoxin (DAT) with potent tumor-promoting and proinflammatory activities. Aplog-1 and DAT exhibited anti-proliferative activities against several human cancer cell lines, whereas aplog-1 did not have tumor-promoting nor proinflammatory activities. We have recently found 10-methyl-aplog-1 (1) to have strong anti-proliferative activity compared with aplog-1. To further investigate the structural factors involved in the tumor-promoting, proinflammatory, and anti-proliferative activities, two dimethyl derivatives of aplog-1 (2, 3) were synthesized, where two methyl groups were installed at positions 4 and 10 or 10 and 12. 10,12-Dimethyl-aplog-1 (2) had stronger inhibitory effects on the growth of several human cancer cell lines than 1 and DAT, but exhibited no tumor-promoting and proinflammatory activities. In contrast, 4,10-dimethyl-aplog-1 (3) displayed weak tumor-promoting and proinflammatory activities along with anti-proliferative activity similar to that of 1 and DAT. Compound 2 would be the optimized seed for anticancer drugs among the simplified analogs of DAT.  相似文献   
964.
An important feature of seed dispersal mutualism is the differentiation of dispersal-related seed traits (dispersal syndrome), which potentially contribute to partitioning of both seed dispersers and regeneration sites among sympatric plants. Yet, the selective factors underlying the diversity in dispersal syndromes are largely unknown. The differential requirements for seed dispersal distances are often proposed as a main factor in plant adaptations to disperser animals. Focusing on two sympatric ant-dispersed sedges Carex lanceolata and Carex tristachya (Cyperaceae), we tested the association of the adaptation to different dispersers with requirements for seed dispersal distances. We found that C. lanceolata was more frequently dispersed by the large ant Formica japonica (which had relatively long dispersal distances compared with other smaller ants) than by C. tristachya, and this was caused by the higher seed attractiveness of C. lanceolata to F. japonica. Pot experiments manipulating adult-to-seedling distances showed that isolation from conspecific adults only benefited C. lanceolata seedlings, and C. tristachya seedlings were not affected. These results support the importance of differential requirements for seed dispersal distances as a factor underlying the diversity in dispersal syndromes among animal-dispersed plants.  相似文献   
965.
The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator‐activated receptor (Ppar) γ coactivator‐1α (Pgc‐1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte‐selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc‐1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.  相似文献   
966.
967.
968.
Lipoproteins in Escherichia coli are anchored to the periplasmic side of either the inner or the outer membrane by a lipid moiety that is covalently attached to the amino-terminal cysteine residue. Membrane specificity depends on a sorting signal at position 2 of the lipoprotein. Lipoproteins directed to the outer membrane are released from the inner membrane in an ATP-dependent manner through the formation of a complex with LolA, a periplasmic chaperone. However, the ATPase involved in this reaction has not been identified. Here we show, using reconstituted proteoliposomes, that a new complex, LolCDE, belonging to the ATP-binding cassette (ABC) transporter family, catalyses the release of lipoproteins in LolA- and sorting-signal-dependent manners. The LolCDE complex differs mechanistically from all other ABC transporters as it is not involved in the transmembrane transport of substrates. This new mechanism is evolutionarily conserved in other gram-negative bacteria.  相似文献   
969.
Phylogeny and the distribution of symbiotic bacteria in the mixed segment of the wood-eating termite Nasutitermes takasagoensis (Shiraki) were studied. Bacterial 16S rRNA genes (rDNA) were amplified from the mixed segment of the gut by PCR, and two kinds of sequences were identified. The phylogenetic tree was constructed by neighbor-joining and maximum parsimony methods to identify symbionts harbored in the mixed segment. They are classified as low-G+C-content gram-positive bacteria and are most closely related to the genus Clostridium. The distribution of these bacteria throughout the whole gut was examined by PCR using specific primers, which suggested that they are confined to the mixed segment despite the presence of bacteria throughout the gut. In situ hybridization indicated that the symbiotic bacteria were localized to the ectoperitrophic space between the midgut wall and the peritrophic membrane in the mixed segment. Electron microscopy revealed the close association between these bacteria and the mesenteric epithelium, suggesting that they have some interactions with the gut tissue of termites.  相似文献   
970.
Dimethyl malonate and dibenzoylmethane attacked the C-2 position of the title 3-nitro-2-enopyranosides from the side opposite the anomeric methoxyl group to afford the 3-enopyranosides (S(N)2' products). In the case of 2,4-pentanedione and ethyl acetoacetate, further intramolecular cyclization occurred to yield dihydropyran derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号