首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1289篇
  免费   71篇
  2022年   10篇
  2021年   20篇
  2020年   6篇
  2019年   16篇
  2018年   27篇
  2017年   12篇
  2016年   35篇
  2015年   33篇
  2014年   30篇
  2013年   70篇
  2012年   69篇
  2011年   82篇
  2010年   47篇
  2009年   41篇
  2008年   75篇
  2007年   50篇
  2006年   87篇
  2005年   62篇
  2004年   53篇
  2003年   60篇
  2002年   65篇
  2001年   32篇
  2000年   31篇
  1999年   24篇
  1998年   19篇
  1997年   12篇
  1996年   9篇
  1993年   7篇
  1992年   19篇
  1991年   12篇
  1990年   17篇
  1989年   10篇
  1988年   16篇
  1987年   10篇
  1986年   13篇
  1985年   17篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1976年   9篇
  1975年   11篇
  1974年   10篇
  1972年   13篇
  1971年   10篇
  1968年   11篇
  1967年   7篇
排序方式: 共有1360条查询结果,搜索用时 15 毫秒
161.
Autotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2) is an autocrine motility factor initially characterized from A2058 melanoma cell-conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA). Production of LPA is sufficient to explain the effects of ATX on tumor cells. Cyclic phosphatidic acid (cPA) is a naturally occurring analog of LPA in which the sn-2 hydroxy group forms a 5-membered ring with the sn-3 phosphate. Cellular responses to cPA generally oppose those of LPA despite activation of apparently overlapping receptor populations, suggesting that cPA also activates cellular targets distinct from LPA receptors. cPA has previously been shown to inhibit tumor cell invasion in vitro and cancer cell metastasis in vivo. However, the mechanism governing this effect remains unresolved. Here we show that 3-carba analogs of cPA lack significant agonist activity at LPA receptors yet are potent inhibitors of ATX activity, LPA production, and A2058 melanoma cell invasion in vitro and B16F10 melanoma cell metastasis in vivo.  相似文献   
162.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   
163.
Neurosteroids are modulators of several receptors and ion channels and are implicated in the pathophysiology of several neuropsychiatric diseases including hepatic encephalopathy (HE). The neurosteroid, allopregnanolone, a positive allosteric modulator of GABAA receptors, accumulates in the brains of HE patients where it can potentiate GABAA receptor-mediated responses. Attenuation of the effects of neurosteroids on GABA-ergic neurotransmission is therefore of interest for the management of HE. In the present study, we determined the effect of the benzodiazepine partial inverse agonist, Ro15-4513, and the benzodiazepine antagonist, flumazenil on modulation of the GABAA mediated chloride currents by allopregnanolone and on spontaneous synaptic activity in cultured hippocampal neurons using the patch-clamp technique. Allopregnanolone (0.03–0.3 μM), dose-dependently potentiated GABA-induced currents, an action significantly reduced by Ro15-4513 (10 μM). In contrast, flumazenil (10 μM) had no effect on the ability of allopregnanolone to potentiate GABAA currents but it blocked the effects of Ro15-4513. The frequency of spontaneous synaptic activity was significantly reduced in the presence of allopregnanolone (0.1 μM) from 1.5 ± 0.7 to 0.1 ± 0.04 Hz. This action was partially reversed by Ro15-4513 (10 μM) but was not significantly influenced by flumazenil (10 μM). These findings suggest that the beneficial affects of Ro15-4513 in experimental HE result from attenuation of the effects of neurosteroids at GABAA receptors. Our results may provide a rational basis for the use of benzodiazepine inverse agonists in the management and treatment of hepatic encephalopathy in patients with liver failure.  相似文献   
164.
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo-Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four-transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD-dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL-deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant-negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse-chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL co-overexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.  相似文献   
165.
Outer dense fiber 2 (Odf2) was initially identified as a major component of sperm tail cytoskeleton and later was suggested to be a widespread component of centrosomal scaffold that preferentially associates with the appendages of the mother centrioles in somatic cells. Here we report the identification of two Odf2-related centrosomal components, hCenexin1 and hCenexin1 variant 1, that possess a unique C-terminal extension. Our results showed that hCenexin1 is the major isoform expressed in HeLa cells, whereas hOdf2 is not detectably expressed. Mammalian polo-like kinase 1 (Plk1) is critical for proper mitotic progression, and its association with the centrosome is important for microtubule nucleation and function. Interestingly, depletion of hCenexin1 by RNA interference (RNAi) delocalized Plk1 from the centrosomes and the C-terminal extension of hCenexin1 was crucial to recruit Plk1 to the centrosomes through a direct interaction with the polo-box domain of Plk1. Consistent with these findings, the hCenexin1 RNAi cells exhibited weakened gamma-tubulin localization and chromosome segregation defects. We propose that hCenexin1 is a critical centrosomal component whose C-terminal extension is required for proper recruitment of Plk1 and other components crucial for normal mitosis. Our results further suggest that the anti-Odf2 immunoreactive centrosomal antigen previously detected in non-germ line cells is likely hCenexin1.  相似文献   
166.
167.
168.
A lignan glycoside [(+)-cycloolivil 4'-O-beta-d-glucopyranoside], a phenolic glycoside [3,4-dimethoxyphenyl 1-O-beta-d-xylopyranosyl-(1-->6)-beta-d-glucopyranoside] and a iridoid glycoside (stereospermoside) were isolated from the leaves and branches of Stereospermum cylindricum, together with (+)-cycloolivil, (+)-cycloolivil 6-O-beta-d-glucopyranoside, (-)-olivil, (-)-olivil 4-O-beta-d-glucopyranoside, (-)-olivil 4'-O-beta-d-glucopyranoside, vanilloloside, decaffeoyl-verbascoside, isoverbascoside, 3,4,5-trimethoxyphenyl 1-O-beta-d-xylopyranosyl-(1-->6)-beta-d-glucopyranoside, ajugol, verminoside, and specioside. The structure elucidations were based on spectroscopic evidence.  相似文献   
169.
The chemical investigation of leaves of Bridelia glauca f. balansae afforded six megastigmane glucosides, named bridelionosides A-F, along with seven known megastigmane glucosides. Their structures were determined by a combination of spectroscopic analyses and by application of the modified Mosher's method.  相似文献   
170.
Xenotransplantation is one of the most attractive solutions for the current worldwide shortage of organs. The knocking out of alpha1,3-galactosyltransferase in pigs resulted in a drastic reduction in xenoantigenicity. However, more recent studies indicate that other xeno-antigens, so-called non-Gal antigens, will also need to be downregulated. In this study, pig N-acetylglucosaminyltransferase I (GnT-I), a key enzyme that initiates the biosynthesis of hybrid- and complex-type N-linked sugar chains, was isolated and the pigGnT-I.2 specific for the O-linked sugar chain was also isolated. Point mutants, pigGnT-I(123) and pigGnT-I(320), were subsequently constructed. While pigGnT-I(123) shows an indistinct dominant negative effect for endogenous GnT-I in pig cells, pigGnT-I(320) had a drastic effect. In addition, in the case of pig cell transfectants with pigGnT-I(320), cell surface carbohydrate structures were significantly altered and its antigenicity to human serum was reduced. Consequently, pigGnT-I(320) appears to be potentially useful in xenotransplantation by remodeling the carbohydrate structures on pig cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号