首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   34篇
  569篇
  2024年   1篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   11篇
  2018年   16篇
  2017年   6篇
  2016年   12篇
  2015年   13篇
  2014年   17篇
  2013年   23篇
  2012年   28篇
  2011年   46篇
  2010年   26篇
  2009年   29篇
  2008年   41篇
  2007年   28篇
  2006年   52篇
  2005年   39篇
  2004年   31篇
  2003年   26篇
  2002年   34篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   10篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有569条查询结果,搜索用时 0 毫秒
31.
Vascular smooth muscle cell (SMC) hyperplasia is known to be an important component in the pathogenesis of arteriosclerosis and restenosis. Although heparin has been well recognized as the representative molecule suppressing SMC growth in vitro, attempts to use heparin as a therapeutic anti-restenosis drug have not favorably influenced the angiographic or clinical outcome after angioplasty in some clinical trials. In this study, we have examined the effect of histidine-rich glycoprotein (HRG), a relatively abundant serum glycoprotein (~100 micrograms/ml in human serum), on the growth inhibition of cultured vascular SMC by heparin. Vascular SMC growth was significantly inhibited by heparin, giving nearly 85% inhibition with 100 micrograms/ml heparin. HRG reversed heparin-induced SMC growth inhibition in a dose dependent manner; 75% restoration of cell growth was observed when 100 micrograms/ml of HRG was co-added with 100 micrograms/ml heparin. Interestingly, micromolar concentrations of the zinc ion (0-10 microM), compatible with concentrations released from activated platelets, were found to enhance the restorative action of HRG. Western blot experiment demonstrated no significant amounts of the HRG moiety in fetal bovine serum, eliminating the possible contribution of contaminant HRG from culture media. These findings indicate that HRG, in combination with the zinc ion, plays a role in modulating the SMC growth response in pathophysiological states and explain the lack of success of heparin as a therapeutic anti-restenosis drug in clinical trials.  相似文献   
32.
 Muscle fiber response to a train of variable-frequency pulses includes the potentiation and catch-like effect. For better understanding of these phenomena, we built an activation model with emphasis on the calcium liberation from and re-sequestration into the sarcoplasmic reticulum, including calcium-induced calcium release. The model had two stable equilibrium points in the calcium concentration. Changes from the low to the high equilibrium point could be produced by high-frequency trains of pulses and would account for the potentiation. The model also showed a catch-like effect, as a long-lasting increment of muscle force after the application of a single extra pulse. The increase in force appeared in resting muscle, disappeared when the muscle was potentiated, and reappeared briefly if the stimulation was continued for long periods. Received: 31 January 2000 / Accepted in revised form: 2 August 2000  相似文献   
33.
Syk protein-tyrosine kinase (PTK) has been implicated in a variety of hematopoietic cell responses including immunoreceptor signaling. However, so far, there has been no evidence of the expression of Syk or Syk-related PTK in non-hematopoietic tissues. In this study, we have purified from blood cell-depleted rat liver a 72-kDa cytoplasmic PTK which shows cross-reactivity with anti-Syk antibody. Partial amino acid sequence analysis revealed that this 72-kDa PTK is identical to Syk. Immunohistochemical and RT-PCR analyses demonstrated that Syk is expressed in human hepatocytes and two rat liver-derived cell lines, JTC-27 and RLC-16. Furthermore, Syk is significantly tyrosine-phosphorylated in response to angiotensin II in JTC-27 cells, and angiotensin II-induced MAP kinase activation is blocked by the treatment of cells with a Syk-selective inhibitor, piceatannol. These results suggest that Syk plays an important role in signaling events of hepatocytes, such as signaling steps leading to MAP kinase activation by G-protein-coupled receptors. This is the first report of the expression of Syk in non-hematopoietic tissue.  相似文献   
34.
Four members of collapsin response mediator proteins (CRMPs) are thought to be involved in the semaphorin-induced growth cone collapse during neural development. Here we report the identification of a novel CRMP3-associated protein, designated CRAM for CRMP3-associated molecule, that belongs to the unc-33 gene family. The deduced amino acid sequence reveals that the CRAM gene encodes a protein of 563 amino acids, shows 57% identity with dihydropyrimidinase, and shows 50-51% identity with CRMPs. CRAM appears to form a large complex composed of CRMP3 and other unidentified proteins in vivo. Indeed, CRAM physically associates with CRMP3 when co-expressed in COS-7 cells. The expression of CRAM is brain-specific, is high in fetal and neonatal rat brain, and decreases to very low levels in adult brain. Moreover, CRAM expression is up-regulated during neuronal differentiation of embryonal carcinoma P19 and PC12 cells. Finally, immunoprecipitation analysis of rat brain extracts shows that CRAM is co-immunoprecipitated with proteins that contain protein-tyrosine kinase activity. Taken together, our results suggest that CRAM, which interacts with CRMP3 and protein-tyrosine kinase(s), is a new member of an emerging family of molecules that potentially mediate signals involved in the guidance and outgrowth of axons.  相似文献   
35.
Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipped with a complex process system consisting of major processes and foot processes whose function is insufficiently understood (Mundel, P., and W. Kriz. 1995. Anat. Embryol. 192:385–397). The major processes of podocytes contain a microtubular cytoskeleton. Taking advantage of a recently established cell culture system for podocytes with preserved ability to form processes (Mundel, P., J. Reiser, A. Zúñiga Mejía Borja, H. Pavenstädt, G.R. Davidson, W. Kriz, and R. Zeller. 1997b. Exp. Cell Res. 36:248–258), we studied the functional significance of the microtubular system in major processes. The following data were obtained: (a) Microtubules (MTs) in podocytes show a nonuniform polarity as revealed by hook-decoration. (b) CHO1/ MKLP1, a kinesin-like motor protein, is associated with MTs in podocytes. (c) Treatment of differentiating podocytes with CHO1/MKLP1 antisense oligonucleotides abolished the formation of processes and the nonuniform polarity of MTs. (d) During the recovery from taxol treatment, taxol-stabilized (nocodazole- resistant) MT fragments were distributed in the cell periphery along newly assembled nocodazole-sensitive MTs. A similar distribution pattern of CHO1/MKLP1 was found under these circumstances, indicating its association with MTs. (e) In the recovery phase after complete depolymerization, MTs reassembled exclusively at centrosomes. Taken together, these findings lead to the conclusion that the nonuniform MT polarity in podocytes established by CHO1/MKLP1 is necessary for process formation.  相似文献   
36.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(-L-guluronate)lyase, which was active on poly(-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the -form of the enzyme molecule and resembled poly(-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The -sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   
37.
Island populations are often thought to be more susceptible to the loss of genetic diversity as a consequence of limited population size and genetic drift, greater susceptibility to detrimental stochastic events and low levels of immigration. However the geographic isolation of islands may create refuges for native crop species whose genetic diversity is threatened from the genetic erosion occurring in mainland areas as a result of crop-wild gene flow and genetic swamping. Many UK islands remain uncharacterised in terms of plant genetic diversity. In this study we compared the genetic diversity of mainland populations and landraces of Trifolium repens with wild populations collected from the islands surrounding the UK, including the island of Hirta in the St Kildan archipelago. Individuals from St Kilda represent a unique conservation resource, with populations both highly differentiated from UK mainland populations and genetically distinct from cultivated varieties, whilst able to retain diversity through limited human influence on the islands. In contrast, there is relative genetic similarity of wild UK populations to cultivated forms highlighted in mainland populations, but with geographic barriers preventing complete homogenisation of the mainland UK genepool. We underline the need for conservation priorities to include common species that are threatened by gene flow from cultivation, and draw attention to the potential of islands to preserve natural levels of genetic diversity.  相似文献   
38.
Autotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2) is an autocrine motility factor initially characterized from A2058 melanoma cell-conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA). Production of LPA is sufficient to explain the effects of ATX on tumor cells. Cyclic phosphatidic acid (cPA) is a naturally occurring analog of LPA in which the sn-2 hydroxy group forms a 5-membered ring with the sn-3 phosphate. Cellular responses to cPA generally oppose those of LPA despite activation of apparently overlapping receptor populations, suggesting that cPA also activates cellular targets distinct from LPA receptors. cPA has previously been shown to inhibit tumor cell invasion in vitro and cancer cell metastasis in vivo. However, the mechanism governing this effect remains unresolved. Here we show that 3-carba analogs of cPA lack significant agonist activity at LPA receptors yet are potent inhibitors of ATX activity, LPA production, and A2058 melanoma cell invasion in vitro and B16F10 melanoma cell metastasis in vivo.  相似文献   
39.
Symbiotic rhizobia differentiate physiologically and morphologically into nitrogen-fixing bacteroids inside legume host nodules. The differentiation is apparently terminal in some legume species, such as peas (Pisum sativum) and peanuts (Arachis hypogaea), likely due to extreme cell swelling induced by the host. In other legume species, such as beans (Phaseolus vulgaris) and cowpeas (Vigna unguiculata), differentiation into bacteroids, which are similar in size and shape to free-living rhizobia, is reversible. Bacteroid modification by plants may affect the effectiveness of the symbiosis. Here, we compare symbiotic efficiency of rhizobia in two different hosts where the rhizobia differentiate into swollen nonreproductive bacteroids in one host and remain nonswollen and reproductive in the other. Two such dual-host strains were tested: Rhizobium leguminosarum A34 in peas and beans and Bradyrhizobium sp. 32H1 in peanuts and cowpeas. In both comparisons, swollen bacteroids conferred more net host benefit by two measures: return on nodule construction cost (plant growth per gram nodule growth) and nitrogen fixation efficiency (H2 production by nitrogenase per CO2 respired). Terminal bacteroid differentiation among legume species has evolved independently multiple times, perhaps due to the increased host fitness benefits observed in this study.Legume-rhizobia interactions vary widely across a diverse paraphyletic group of soil bacteria known for symbiotic nitrogen fixation inside root nodules of over 18,000 species of legumes throughout the world (Lewis et al., 2005). In several legume species, rhizobial cells are induced to swell during their differentiation into nitrogen-fixing bacteroids (Oono et al., 2010). These legume species belong to five different major papilionoid clades (inverted repeat-lacking clade, genistoids, dalbergioids, mirbelioids, and millettioids), a pattern suggestive of convergent evolution. Swelling apparently leads to terminal differentiation; swollen bacteroids no longer divide normally (Zhou et al., 1985). In other legume host species, bacteroid differentiation is less extreme, leading to nonswollen bacteroids. Nonswollen bacteroids are similar in shape and size to free-living rhizobia and divide normally once outside of their nodules. The proximate mechanisms for host-imposed bacteroid swelling have been investigated (Van de Velde et al., 2010), but what drove the repeated evolution of this trait? The multiple independent origins of host traits causing bacteroids to swell suggest that swollen bacteroids may provide more net benefit to legumes. Could the swelling of bacteroids improve nitrogen fixation efficiency (e.g. nitrogen fixed relative to carbon cost)? In this study, we compare symbiotic efficiencies of rhizobia in legume hosts that are evolutionarily diverged but share a common effective rhizobial strain, whose bacteroids are swollen in one host and nonswollen in the other.Variations among host species in benefits and costs of symbiosis with rhizobia are not commonly explored (Thrall et al., 2000) because legume species typically nodulate with only one group of rhizobia (e.g. Sinorhizobium sp. in Medicago), although some legumes and some rhizobia are more promiscuous. Rhizobium sp. NGR234 has the largest known host range but does not fix nitrogen effectively with any legume species currently recognized to induce swelling of rhizobial bacteroids (Pueppke and Broughton, 1999). Some Sinorhizobium fredii strains apparently fix nitrogen in certain cultivars of soybean (Glycine max; hosting nonswollen bacteroids) and alfalfa (Medicago sativa; hosting swollen bacteroids; Hashem et al., 1997), but our efforts to replicate these results did not lead to successful nodulation. Therefore, we studied two strains, a transgenic strain that nodulates beans (Phaseolus vulgaris) and peas (Pisum sativum) and a second wild strain harvested from cowpeas (Vigna unguiculata) that also nodulates peanuts (Arachis hypogaea). Beans and cowpeas are both within the Phaseolid group and do not induce terminal differentiation of rhizobial bacteroids. Peas and peanuts both host terminally differentiated bacteroids but are in distant clades and likely have different genetic origins for traits that induce terminal differentiation (Oono et al., 2010). Also, the swollen bacteroids in peas are branched while those in peanuts are spherical.Differences in symbiotic qualities between swollen and nonswollen bacteroids have been previously explored in peanuts and cowpeas by Sen and Weaver (1980, 1981, 1984), who also hypothesized that swollen bacteroids are more beneficial to the host plant than nonswollen ones. They found 1.5 to 3 times greater acetylene reduction by nitrogenase (as well as plant nitrogen) per nodule mass in peanuts than in cowpeas at multiple nodule ages (Sen and Weaver, 1980). Acetylene reduction per bacteroid was also greater in peanuts than in cowpeas when measuring whole nodules, but this difference disappeared when isolated bacteroids were assayed (Sen and Weaver, 1984). They concluded that swelling of peanut bacteroids per se was not responsible for the higher rate of nitrogen fixation per bacteroid. They suggested that in cowpea nodules, with greater numbers of smaller bacteroids per nodule volume, availability of oxygen to each bacteroid might be restricted such that the rate of oxidative phosphorylation, necessary for nitrogen fixation, is reduced. Fixation rates per bacteroid may be different between hosts due to nodule gas permeability or bacteroid crowding within nodules. However, fixation efficiency (nitrogen fixed per carbon respired) would not necessarily be affected by these and may be more important for the host than the rate of fixation.Rhizobial performances are often compared by measuring the symbiotic benefits, e.g. rates of acetylene reduction or plant growth (Sen and Weaver, 1984; Hashem et al., 1997; Lodwig et al., 2005), but rarely by measuring the symbiotic costs, e.g. carbon consumed or respired. Up to 25% of a legume’s net photosynthate may be required for nitrogen fixation by rhizobia (Minchin et al., 1981). Faster fixation rates (mol nitrogen per s) can be beneficial for hosts, but carbon costs can also be important. Rhizobia that fix more nitrogen per carbon respired could free more carbon for other functions, including the option of supporting more nodules with the same amount of photosynthate. If legumes are sometimes carbon limited, then improved carbon-use efficiency could enhance plant fitness. Measuring both benefits and costs is therefore key to an accurate understanding of the symbiotic performance of a rhizobial strain.While we recognize the many physiological differences between peas and beans or peanuts and cowpeas, the fact that terminal differentiation induced by host legumes evolved multiple times independently (Oono et al., 2010) suggests there may be some consistent host symbiotic benefit, such as improved fixation efficiency. Here, we measured the efficiency of each of two strains as swollen bacteroids in one host and nonswollen bacteroids in another. We measured nitrogenase activity as hydrogen (H2) production in an N2-free atmosphere (Layzell et al., 1984; Witty and Minchin, 1998), and compared it to carbon dioxide (CO2) respiration to estimate return on nodule operation cost. We also compared host biomass growth per total nodule mass growth to estimate return on nodule construction cost. To further assess carbon allocation to the different types of bacteroids, we also measured the average amounts per bacteroid of polyhydroxybutyrate (PHB), an energy storage compound that can comprise up to 50% of bacteroid dry weight (Trainer and Charles, 2006). A greater PHB accumulation per bacteroid may require a decreased allocation of carbon for nitrogenase activity within the bacteroids, and hence, less plant growth per carbon invested in bacteroids. We demonstrate that peas and peanuts that host swollen bacteroids have higher fixation efficiency as well as greater plant return on nodule construction than beans and cowpeas, respectively, nodulated with the same rhizobial strains. PHB was not consistently correlated with plant:nodule growth efficiency with the tested strains. These findings show that swollen bacteroids can indeed provide greater benefits to their legume hosts.  相似文献   
40.
In a previous study, retrofractamide A from the fruit of Piper chaba was shown to promote adipogenesis in 3T3-L1 cells. In the present study, retrofractamide A and its derivatives were synthesized, and their adipogenetic effects in 3T3-L1 cells were examined. Among the tested compounds, an amide composed of 9-(3′,4′-methylenedioxyphenyl)-nona-2E,4E,8E-trienoic acid and an n-butyl or n-pentyl amine showed strongest activity. Moreover, the amide with the n-pentyl amine moiety significantly increased the uptake of 2-deoxyglucose into the cells, and also increased the mRNA levels of adiponectin, peroxisome proliferator-activated receptor γ2 (PPARγ2), glucose transporter 4 (GLUT4), fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein (C/EBP) α and β in a similar manner as the PPARγ agonist troglitazone, although it had less agonistic activity against PPARγ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号