首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   72篇
  2021年   7篇
  2018年   14篇
  2017年   10篇
  2016年   22篇
  2015年   33篇
  2014年   32篇
  2013年   59篇
  2012年   56篇
  2011年   54篇
  2010年   34篇
  2009年   35篇
  2008年   48篇
  2007年   53篇
  2006年   42篇
  2005年   51篇
  2004年   58篇
  2003年   50篇
  2002年   40篇
  2001年   16篇
  2000年   18篇
  1999年   19篇
  1998年   15篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   15篇
  1991年   11篇
  1990年   9篇
  1989年   20篇
  1988年   7篇
  1987年   12篇
  1986年   13篇
  1985年   23篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   14篇
  1980年   8篇
  1979年   8篇
  1977年   8篇
  1976年   12篇
  1974年   11篇
  1973年   9篇
  1972年   6篇
  1970年   8篇
  1969年   6篇
  1968年   6篇
  1966年   6篇
排序方式: 共有1073条查询结果,搜索用时 31 毫秒
71.
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.  相似文献   
72.
73.
74.

Background  

Since the 1980s, a high EEG abnormality rate has been reported for patients with panic disorder. However, how the EEG abnormalities of panic disorder patients are related to the clinical features and pathology of these patients has yet to be clarified. In this study we investigated whether or not EEG abnormalities are related to the 13 symptoms in the DSM-IV criteria for a diagnosis of panic attacks.  相似文献   
75.
76.
The carbon-source dependency of the sexual process in Schizosaccharomycesjaponicus was studied. Schiz. japonicus grew well in vegetativemedia containing glucose, sucrose, fructose or raffinose, anddid poorly in one containing mannose. On the other hand, itssexual process proceeded well in sporulation media containingglucose, sucrose or mannose, and was markedly delayed in thosecontaining fructose or raffinose. Neither vegetative growthnor sexual process occurred when non-fermentable carbon sources,such as glycerol, were used. The amount of glucose in the sporulationmedium sufficient for completion of the sexual process varieddepending on the cell-population density. Glucose was requiredfor both zygote and ascus formation but not for spore liberation.Cells were committed to sporulation shortly after the stageof zygote formation. (Received August 3, 1978; )  相似文献   
77.
Phagocytosis is a vital first-line host defense mechanism against infection involving the ingestion and digestion of foreign materials such as bacteria by specialized cells, phagocytes. For phagocytes to ingest the foreign materials, they form an actin-based membrane structure called phagocytic cup at the plasma membranes. Formation of the phagocytic cup is impaired in phagocytes from patients with a genetic immunodeficiency disorder, Wiskott-Aldrich syndrome (WAS). The gene defective in WAS encodes Wiskott-Aldrich syndrome protein (WASP). Mutation or deletion of WASP causes impaired formation of the phagocytic cup, suggesting that WASP plays an important role in the phagocytic cup formation. However, the molecular details of its formation remain unknown. We have shown that the WASP C-terminal activity is critical for the phagocytic cup formation in macrophages. We demonstrated that WASP is phosphorylated on tyrosine 291 in macrophages, and the WASP phosphorylation is important for the phagocytic cup formation. In addition, we showed that WASP and WASP-interacting protein (WIP) form a complex at the phagocytic cup and that the WASP.WIP complex plays a critical role in the phagocytic cup formation. Our results indicate that the phosphorylation of WASP and the complex formation of WASP with WIP are the essential molecular steps for the efficient formation of the phagocytic cup in macrophages, suggesting a possible disease mechanism underlying phagocytic defects and recurrent infections in WAS patients.  相似文献   
78.
Although obesity is a risk factor for development of type 2 diabetes and chemical modification of proteins by advanced glycoxidation and lipoxidation end products is implicated in the development of diabetic complications, little is known about the chemical modification of proteins in adipocytes or adipose tissue. In this study we show that S-(2-succinyl)cysteine (2SC), the product of chemical modification of proteins by the Krebs cycle intermediate, fumarate, is significantly increased during maturation of 3T3-L1 fibroblasts to adipocytes. Fumarate concentration increased > or =5-fold during adipogenesis in medium containing 30 mm glucose, producing a > or =10-fold increase in 2SC-proteins in adipocytes compared with undifferentiated fibroblasts grown in the same high glucose medium. The elevated glucose concentration in the medium during adipocyte maturation correlated with the increase in 2SC, whereas the concentration of the advanced glycoxidation and lipoxidation end products, N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine, was unchanged under these conditions. Adipocyte proteins were separated by one- and two-dimensional electrophoresis and approximately 60 2SC-proteins were detected using an anti-2SC polyclonal antibody. Several of the prominent and well resolved proteins were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry. These include cytoskeletal proteins, enzymes, heat shock and chaperone proteins, regulatory proteins, and a fatty acid-binding protein. We propose that the increase in fumarate and 2SC is the result of mitochondrial stress in the adipocyte during adipogenesis and that 2SC may be a useful biomarker of mitochondrial stress in obesity, insulin resistance, and diabetes.  相似文献   
79.
In order to improve medical treatment of ischemic injury such as myocardial infarction, it is important to elucidate hypoxia-induced changes to endothelial cells. An in vitro blood vessel model, in which HUVECs are stimulated to form a network of capillary-like tubes, was used to analyze hypoxia-induced morphological and biochemical changes. When exposed to hypoxia, the network of capillary tubes broke down into small clusters. This tube breakdown was accompanied by chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, and activation of two apoptotic signals, caspase-3 and p38. We investigated what roles caspase cascade and p38 play in hypoxia-induced apoptosis and tube breakdown by using zVAD-fmk and SB203580, specific inhibitors of these two apoptotic signals, respectively. Chromatin condensation and cell nuclear fragmentation and tube breakdown were effectively inhibited by SB203580, but not by zVAD-fmk. SB203580 caused dephosphorylation of p38, which indicates that p38 was autophosphorylated. Inhibition by zVAD-fmk caused slight MW increase in p17 and emergence of p19, which indicates that the inhibitor caused partial processing of caspase-3. Inhibition of p38 suppressed activation of caspase-3 but not vice versa. In addition, these two inhibitors were shown to differentially inhibit cleavage of so-called caspase substrates. SB203580 inhibited cleavage of PARP and lamin A/C, while zVAD-fmk inhibited cleavage of lamin A/C but not that of PARP. Taken together, these results show that p38 is located upstream of caspase cascade and that, although caspase-3 is activated, a p38-regulated caspase-independent pathway is crucial for the execution of hypoxia-induced apoptosis and tube breakdown.  相似文献   
80.
To understand the possible functions and subcellular localizations of sulfonylurea receptors (SURs) in cardiac muscle, polyclonal anti-SUR2A and anti-SUR2B antisera were raised. Immunoblots revealed both SUR2A and SUR2B expression in mitochondrial fractions of rat heart and other cellular fractions such as microsomes and cell membranes. Immunostaining detected ubiquitous expression of both SUR2A and SUR2B in rat heart in the atria, ventricles, interatrial and interventricular septa, and smooth muscles and endothelia of the coronary arteries. Electron microscopy revealed SUR2A immunoreactivity in the cell membrane, endoplasmic reticulum (ER), and mitochondria. SUR2B immunoreactivity was mainly localized in the mitochondria as well as in the ER and cell membrane. Thus, SUR2A and SUR2B are not only the regulatory subunits of sarcolemmal K(ATP) channels but may also function as regulatory subunits in mitochondrial K(ATP) channels and play important roles in cardioprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号