首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   32篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   12篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   23篇
  2013年   47篇
  2012年   37篇
  2011年   41篇
  2010年   25篇
  2009年   23篇
  2008年   44篇
  2007年   33篇
  2006年   30篇
  2005年   36篇
  2004年   51篇
  2003年   35篇
  2002年   41篇
  2001年   21篇
  2000年   12篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   12篇
  1990年   9篇
  1989年   17篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   11篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1964年   1篇
  1963年   1篇
排序方式: 共有733条查询结果,搜索用时 15 毫秒
171.
Interstitial cells of Cajal in the myenteric plexus region (ICC-MyP) form a network and generate basal pacemaking electrical activity. This morphological feature leads us to believe that these cells may be essential for the coordinating actions of gastrointestinal (GI) motility. We aim to propose a new method for functional assessment of ICC electrical activity and its network. Field potentials in a 1 mm2 region were simultaneously measured using an 8 × 8 microelectrode array (MEA) with a polar distance of 150 μm. The extracellular solution contained nifedipine and tetrodotoxin (TTX) to suppress activities of smooth muscle cells and neurons, respectively. We compared spatial electrical activities between ileal muscle preparations from wild-type (WT) and W/Wv mice. In spatio-temporal analyses, basal electrical activities were well synchronized with a propagation delay in WT, while those in W/Wv were small in amplitude and irregular in occurrence. The power spectrum in WT had a prominent peak corresponding to the frequency of ICC-MyP pacemaker activity, while that of W/Wv lacked it. Consequently, the ratio of the spectral power in 9.4–27.0 cpm was significantly larger in WT than in W/Wv. In conclusion, MEA measurements demonstrated that the network-forming ICC-MyP not only generates but also coordinates basal electrical activities. Disorders of GI motility based on morphological and functional impairments of ICC network with the range of several hundreds of micrometers, could be uncovered in future extensive studies.  相似文献   
172.
Methamphetamine induces several cardiac dysfunctions, which leads to arrhythmia, cardiac failure and sudden cardiac death. Although these cardiac alterations elicited by methamphetamine were thought to be due to an indirect action of methamphetamine, namely, an excessive catecholamine release from synaptic terminals, while it seems likely that methamphetamine directly modulates the functioning of cardiomyocytes independent of neurotransmitters. However, the direct effects of methamphetamine on cardiomyocytes are still not clear. We show that methamphetamine directly accelerates the beating rate and alters Ca2+ oscillation pattern in cultured neonatal rat cardiomyocytes. Adrenergic receptor antagonists did not block the methamphetamine-induced alterations in cardiomyocytes. Treatment with a ryanodine receptor type 2 inhibitor and a sarcoplasmic reticulum Ca2+-ATPase inhibitor did not affect these responses, either. In contrast, the L-type Ca2+ channel inhibitor nifedipine eradicated these responses. Furthermore, methamphetamine elevated the internal free Ca2+ concentration in HEK-293T cells stably transfected with the L-type Ca2+ channel α1C subunit. In neonatal rat cardiomyocytes, methamphetamine accelerates beating rate and alters Ca2+ oscillation pattern by increasing Ca2+ entry via the L-type Ca2+ channels independent of any neurotransmitters.  相似文献   
173.

Background

Human T-lymphotropic virus type 1 (HTLV-1) is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL). The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified.

Principal Findings

Here, we demonstrate that CD4+CD25+CCR4+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2), Th17, and regulatory T (Treg) cells in healthy individuals, we demonstrate that IFN-γ production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4+CD25+CCR4+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-γ-producing CD4+CD25+CCR4+Foxp3 T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity.

Conclusions

We have defined a unique T cell subset—IFN-γ+CCR4+CD4+CD25+ T cells—that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.  相似文献   
174.
We treated the high salt‐washed canine pancreatic rough ER (KRM) with 0.18% Triton X‐100, separated the extract from the residual membrane (0.18%Tx KRM), and processed the extract with SM‐2 beads to recover membrane proteins in proteoliposomes. To focus on integral membrane proteins, KRM, 0.18%Tx KRM and proteoliposomes were subjected to sodium carbonate treatment, and analyzed by 2‐D gel electrophoresis. Consequently we found that a distinct group of integral membrane protein of KRM preferentially extracted from the membrane and recovered in proteoliposomes did exist, while majority of KRM integral membrane proteins were fractionated in 0.18%Tx KRM, which retained the basic structure and functions of KRM. Protein identification showed that the former group was enriched with proteins exported from the ER and the latter group comprised mostly of ER resident proteins. This result will potentially affect the prevailing view of the ER membrane structure as well as protein sorting from the ER.  相似文献   
175.
O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1α and -1β genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1α gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1α gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.  相似文献   
176.
NADH-dependent enzyme reducing acetophenone derivatives with high stereoselectivities and wide substrate specificities from Geotrichum candidum NBRC 4597 was isolated, purified, characterized, and used for asymmetric synthesis. Through five-step purification including ammonium sulfate fractionation and a series of chromatographies, the enzyme was purified about 150-fold with a yield of 5.6%. The active enzyme has a molecular mass of 73 kDa determined by gel filtration chromatography, and the SDS-PAGE result reveals that the molecular size of the subunit is 36 kDa. These results indicate that the enzyme consists of a homodimer of a 36 kDa subunit. The acetophenone reductase exhibited the highest activity at 50°C and optimal pH at 5.5. The enzyme was the most stable at 40°C. No metal ions considerably activated the enzyme, and such metal ions as Cu2+, Cd2+, and Zn2+ strongly inhibited the activity of the enzyme. The V max and the apparent K m value of the reductase were 77.0 μmol/min per milligram of protein and 0.296 mM for acetophenone, respectively. The N-terminal and internal amino acid sequences were determined by peptide sequencer. Furthermore, the purified enzyme was used for asymmetric reduction of acetophenone, resulting in the formation of corresponding (S)-alcohol with 99% ee.  相似文献   
177.
178.
-Chymotrypsin catalyzed the highly enantioselective amidation of chiral amines such as 1-(1-naphthyl)ethylamine using N-benzyloxycarbonyl-(S)-phenylalanine carbamoylmethyl ester as acyl donor (E = 25–660) in acetonitrile with low water content.  相似文献   
179.
The effect of Maillard reaction on red blood cells (RBC) deformability was investigated. Exposure of RBC to carbonyl compounds (dl-glyceraldehyde, glyoxal, glycolaldehyde, 3-deoxyglucosone, and d-glucose) leading to Maillard reaction caused a marked decrease in RBC deformability even at 1 mM level. The decrease rate depended on the kind of carbonyl compounds, in which both dl-glyceraldehyde and glyoxal significantly decreased the RBC deformability (p < 0.05). In addition, the decrease rate also differed among volunteers tested, indicating that the sensitivity against carbonyl compounds varies among them. In order to elucidate the mechanism of the decrease in RBC deformability, RBC was exposed to carbonyl compounds in the presence of aminoguanidine which is the inhibitor of AGE formation in Maillard reactions. Aminoguanidine inhibited the decrease in RBC deformability by dl-glyceraldehyde and glyoxal. When Hb which has a high reactivity with carbonyl compounds was incubated with those carbonyl compounds, dl-glyceraldehyde and glyoxal showed the high reactivity with Hb compared with other carbonyl compounds. These results indicate that Maillard reaction between RBC proteins and carbonyl compounds leads to the decrease in RBC deformability. On the other hand, generated by carbonyl compounds involved in lowering the deformability only to a negligible level.  相似文献   
180.
It is well documented that the enzymatic active site of Helicobacter pylori urease is present in the beta-subunit. An important sequence of 135 amino acids of the beta-subunit was determined from the structure of H. pylori urease and by a homology-based study of the urease of other bacteria and plants. The sequence (UreB) was expressed in Escherichia coli as a recombinant fusion protein with glutathione-S-transferase (GST). Seventeen monoclonal antibodies, UA-1-17, were produced using the UreB-GST as the immunogen. The obtained monoclonal antibodies showed a high specificity to UreB, and some of the MAbs cross-reacted with Jack bean urease. About 70% of the established MAbs displayed an inhibitory effect on the enzymatic activity of the urease. Among them, UA-15 MAb could reduce the activity by 53% and it immunologically binds to the bacterium infecting the human stomach mucosa. The antiserum induced by immunization with a recombinant UreB-GST into rabbits displayed a specific binding to mucosal surfaces of the human stomach infected with the pathogen H. pylori. Moreover, the antiserum suppressed the enzymatic activity of H. pylori urease, while the purified H. pylori urease could not induce such an antiserum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号