首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   65篇
  1299篇
  2021年   10篇
  2018年   11篇
  2017年   12篇
  2016年   19篇
  2015年   21篇
  2014年   25篇
  2013年   60篇
  2012年   54篇
  2011年   58篇
  2010年   29篇
  2009年   34篇
  2008年   57篇
  2007年   43篇
  2006年   48篇
  2005年   46篇
  2004年   66篇
  2003年   51篇
  2002年   61篇
  2001年   34篇
  2000年   36篇
  1999年   38篇
  1998年   17篇
  1997年   16篇
  1996年   14篇
  1995年   12篇
  1994年   12篇
  1993年   9篇
  1992年   27篇
  1991年   29篇
  1990年   30篇
  1989年   31篇
  1988年   22篇
  1987年   17篇
  1986年   23篇
  1985年   24篇
  1984年   16篇
  1983年   12篇
  1982年   8篇
  1981年   10篇
  1980年   11篇
  1979年   17篇
  1978年   18篇
  1977年   8篇
  1976年   10篇
  1974年   9篇
  1972年   13篇
  1971年   15篇
  1970年   8篇
  1969年   9篇
  1968年   6篇
排序方式: 共有1299条查询结果,搜索用时 0 毫秒
71.
Novel non-natural amino acids carrying a dansyl fluorescent group were designed, synthesized, and incorporated into various positions of streptavidin by using a CGGG four-base codon in an Escherichia coli in vitro translation system. 2,6-Dansyl-aminophenylalanine (2,6-dnsAF) was found to be incorporated into the protein more efficiently than 1,5-dansyl-lysine, 2,6-dansyl-lysine, and 1,5-dansyl-aminophenylalanine. Fluorescence measurements indicate that the position-specific incorporation of the 2,6-dnsAF is a useful technique to probe protein structures. These results also indicate that well-designed non-natural amino acids carrying relatively large side chains can be accepted as substrates of the translation system.  相似文献   
72.
The degradation of purine nucleoside is the first step of purine nucleoside uptake. This degradation is catalyzed by purine nucleoside phosphorylase, which is categorized into two classes: hexameric purine nucleoside phosphorylase (6PNP) and trimeric purine nucleoside phosphorylase (3PNP). Generally, 6PNP and 3PNP degrade adenosine and guanosine, respectively. However, the substrate specificity of 6PNP and 3PNP of Thermus thermophilus (tt6PNP and tt3PNP, respectively) is the reverse of that anticipated based on comparison to other phosphorylases. Specifically, in this paper we reveal by gene disruption that tt6PNP and tt3PNP are discrete enzymes responsible for the degradation of guanosine and adenosine, respectively, in T. thermophilus HB8 cells. Sequence comparison combined with structural information suggested that Asn204 in tt6PNP and Ala196/Asp238 in tt3PNP are key residues for defining their substrate specificity. Replacement of Asn204 in tt6PNP with Asp changed the substrate specificity of tt6PNP to that of a general 6PNP. Similarly, substitution of Ala196 by Glu and Asp238 by Asn changed the substrate specificity of tt3PNP to that of a general 3PNP. Our results indicate that the residues at these positions determine substrate specificity of PNPs in general. Sequence analysis further suggested most 6PNP and 3PNP enzymes in thermophilic species belonging to the Deinococcus-Thermus phylum share the same critical residues as tt6PNP and tt3PNP, respectively.  相似文献   
73.
The growth of a thiamine pyrophosphate auxotroph of Escherichi coli was inhibited by either thiamine or thiamine monophosphate, and the growth of a thiamine monophosphate auxotroph was inhibited by thiamine. The thiamine pyrophosphate-dependent oxidation of pyruvate was inhibited by thiamine with whole cells of the thiamine pyrophosphate auxotroph but not with cell extracts prepared from the same organism. In addition, the thiamine pyrophosphate uptake of the thiamine pyrophosphate auxotroph was inhibited by either thiamine or thiamine monophosphate. Although the thiamine pyrophosphate uptake of a revertant, selected for prototrophy from the thiamine monophosphate auxotroph, was inhibited by thiamine to an extent comparable to that observed with the thiamine monophosphate auxotroph, its growth was no longer inhibited by thiamine. A possible mechanism for the inhibition by thiamine and thiamine monophosphate in the utilization of thiamine pyrophosphate is discussed.  相似文献   
74.
Oxidative stress plays an important role in the structural and functional abnormalities of diabetic heart. Glutathione peroxidase (GSHPx) is a critical antioxidant enzyme that removes H(2)O(2) in both the cytosol and mitochondia. We hypothesized that the overexpression of GSHPx gene could attenuate left ventricular (LV) remodeling in diabetes mellitus (DM). We induced DM by injection of streptozotocin (160 mg/kg ip) in male GSHPx transgenic mice (TG+DM) and nontransgenic wildtype littermates (WT+DM). GSHPx activity was higher in the hearts of TG mice compared with WT mice, with no significant changes in other antioxidant enzymes. LV thiobarbituric acid-reactive substances measured in TG+DM at 8 wk were significantly lower than those in WT+DM (58 +/- 3 vs. 71 +/- 5 nmol/g, P < 0.05). Heart rate and aortic blood pressure were comparable between groups. Systolic function was preserved normal in WT+DM and TG+DM mice. In contrast, diastolic function was impaired in WT+DM and was improved in TG+DM as assessed by the deceleration time of peak velocity of transmitral diastolic flow and the time needed for relaxation of 50% maximal LV pressure to baseline value (tau; 13.5 +/- 1.2 vs. 8.9 +/- 0.7 ms, P < 0.01). The TG+DM values were comparable with those of WT+Control (tau; 7.8 +/- 0.2 ms). Improvement of LV diastolic function was accompanied by the attenuation of myocyte hypertrophy, interstitial fibrosis, and apoptosis. Overexpression of GSHPx gene ameliorated LV remodeling and diastolic dysfunction in DM. Therapies designed to interfere with oxidative stress might be beneficial to prevent cardiac abnormalities in DM.  相似文献   
75.
Chlorophyllide a was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) (PEG-NH2) to form a PEG-chlorophyllide conjugate through an acid-amide bond. The conjugate catalyzed the reduction of methylviologen in the presence of 2-mercaptoethanol. It also catalyzed the photoreduction of NADP+ or NAD+ in the presence of ascorbate as an electron donor and ferredoxin-NADP+ reductase as the coupling enzyme. Utilizing the reducing power of NADPH generated by PEG-chlorophyllide conjugate under illumination, glutamate was synthesized from 2-oxoglutarate and NH4+ in the presence of glutamate dehydrogenase. PEG-chlorophyllide conjugate was quite stable toward light illumination compared with chlorophyll a. The increase in the molecular weight of PEG in the PEG-chlorophyllide conjugates was accompanied by the enhancement of photostability of the conjugate and also by the increased solubility in the aqueous solution.  相似文献   
76.
Toll-like receptor 2 (TLR2) and CD14 function as pattern recognition receptors for bacterial peptidoglycan (PGN). TLRs and CD14 possess repeats of the leucine-rich motif. To address the role of the extracellular domain of TLR2 in PGN signaling, we constructed CD14/TLR2 chimeras, in which residues 1-356 or 1-323 of CD14 were substituted for the extracellular domain of TLR2, and five deletion mutants of TLR2, in which the progressively longer regions of extracellular TLR2 regions were deleted. PGN induced NF-kappaB activation in HEK293 cells expressing TLR2 but not in cells expressing CD14/TLR2 chimeras. The cells transfected with a deletion mutant TLR2(DeltaCys30-Ile64) as well as TLR2(DeltaCys30-Asp160) and TLR2(DeltaCys30-Asp305) failed to respond to PGN, indicating the importance of the TLR2 region Cys(30)-Ile(64). Although TLR2(DeltaCys30-Ser39) conferred cell responsiveness to PGN, the cells expressing TLR2(DeltaSer40-Ile64) failed to induce NF-kappaB activation. In addition, NF-kappaB activity elicited by PGN was significantly attenuated in the presence of synthetic peptide corresponding to the TLR2 region Ser(40)-Ile(64). From these results, we conclude that; 1) CD14 cannot functionally replace the extracellular domain of TLR2 in PGN signaling; 2) the TLR2 region Cys(30)-Ser(39) is not required for PGN recognition; 3) the TLR2 region containing Ser(40)-Ile(64) is critical for PGN recognition.  相似文献   
77.
Thymus- and activation-regulated chemokine (TARC; CCL17) is a lymphocyte-directed CC chemokine that specifically chemoattracts CC chemokine receptor 4-positive (CCR4(+)) Th2 cells. To establish the pathophysiological roles of TARC in vivo, we investigated here whether an mAb against TARC could inhibit the induction of asthmatic reaction in mice elicited by OVA. TARC was constitutively expressed in the lung and was up-regulated in allergic inflammation. The specific Ab against TARC attenuated OVA-induced airway eosinophilia and diminished the degree of airway hyperresponsiveness with a concomitant decrease in Th2 cytokine levels. Our results for the first time indicate that TARC is a pivotal chemokine for the development of Th2-dominated experimental allergen-induced asthma with eosinophilia and AHR. This study also represents the first success in controlling Th2 cytokine production in vivo by targeting a chemokine.  相似文献   
78.
79.
Paroxysmal kinesigenic choreoathetosis (PKC), the most frequently described type of paroxysmal dyskinesia, is characterized by recurrent, brief attacks of involuntary movements induced by sudden voluntary movements. Some patients with PKC have a history of infantile afebrile convulsions with a favorable outcome. To localize the PKC locus, we performed genomewide linkage analysis on eight Japanese families with autosomal dominant PKC. Two-point linkage analysis provided a maximum LOD score of 10.27 (recombination fraction [theta] =.00; penetrance [p] =.7) at marker D16S3081, and a maximum multipoint LOD score for a subset of markers was calculated to be 11.51 (p = 0.8) at D16S3080. Haplotype analysis defined the disease locus within a region of approximately 12.4 cM between D16S3093 and D16S416. P1-derived artificial chromosome clones containing loci D16S3093 and D16S416 were mapped, by use of FISH, to 16p11.2 and 16q12.1, respectively. Thus, in the eight families studied, the chromosomal localization of the PKC critical region (PKCR) is 16p11.2-q12.1. The PKCR overlaps with a region responsible for "infantile convulsions and paroxysmal choreoathetosis" (MIM 602066), a recently recognized clinical entity with benign infantile convulsions and nonkinesigenic paroxysmal dyskinesias.  相似文献   
80.
Toward elucidating the functional aspects ofGLUT3, a primary neuronal glucose transporter isoform in the vertebrate central nervous system, this study examined its expression in cholinergic amacrine cells made identifiable by the presence of acetylcholine-synthesizing enzyme, choline acetyltransferase (ChAT), in the rat retina. Double-immunofluorescence staining of adult rat retinal tissue with anti-GLUT3 and anti-ChAT antibodies revealed characteristic stratified GLUT3 immunoreactivity (GLUT3-IR) in the inner plexiform layer (IPL) that was identical to the arborization pattern of ChAT-positive neuronal processes there. In addition, approximately 30-50% of intensely GLUT3-immunoreactive cell bodies in the inner nuclear layer and ganglion cell layer showed ChAT-IR, while the majority of ChAT-positive cell bodies were also intensely GLUT3 immunoreactive. Analysis at the cellular level using retinal cells in culture revealed similar findings. These results collectively indicate that cholinergic amacrine cells constitute the major component of GLUT3-expressing cells in the rat retina. It is expected that the link demonstrated here between GLUT3 expression and cholinergic amacrine cell population will provide clues for further analyzing GLUT3 function in the retina.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号