首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3231篇
  免费   200篇
  2022年   20篇
  2021年   33篇
  2020年   20篇
  2019年   35篇
  2018年   42篇
  2017年   42篇
  2016年   66篇
  2015年   93篇
  2014年   117篇
  2013年   219篇
  2012年   188篇
  2011年   188篇
  2010年   106篇
  2009年   86篇
  2008年   179篇
  2007年   142篇
  2006年   161篇
  2005年   157篇
  2004年   156篇
  2003年   134篇
  2002年   109篇
  2001年   99篇
  2000年   104篇
  1999年   94篇
  1998年   37篇
  1997年   25篇
  1996年   18篇
  1995年   29篇
  1994年   22篇
  1993年   25篇
  1992年   47篇
  1991年   52篇
  1990年   49篇
  1989年   56篇
  1988年   53篇
  1987年   47篇
  1986年   46篇
  1985年   43篇
  1984年   36篇
  1983年   15篇
  1982年   36篇
  1981年   18篇
  1980年   11篇
  1979年   17篇
  1978年   20篇
  1977年   12篇
  1976年   12篇
  1974年   19篇
  1973年   14篇
  1969年   16篇
排序方式: 共有3431条查询结果,搜索用时 15 毫秒
61.
Membrane-bound inositolpolyphosphate 5-phosphatase was solubilized and highly purified from a microsomal fraction of rat liver. Its physiochemical and enzymological properties were compared with those of highly purified preparations of two types of soluble enzyme (soluble Type I and Type II) from rat brain. The molecular masses of the membrane-bound and soluble Type I enzymes were 32 kDa, while that of soluble Type II enzyme was 69 kDa, as determined by molecular sieve chromatography. The membrane-bound and soluble Type I enzymes showed similar broad peaks on isoelectric focusing (pI 5.8-6.4), while soluble Type II enzyme showed multiple peaks in the region between pI 4.0-5.8. All three enzymes required divalent cation for activity. Mg2+ was the most effective for both the membrane-bound and soluble Type I enzymes, while Co2+ enhanced soluble Type II enzyme activity about 1.5-fold relative to Mg2+ at 1 mM. The optimal pH of both the membrane-bound and soluble Type I enzymes was 7.8, while that of soluble Type II was 6.8. The Km values for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] of all three enzymes were similar (5-8 microM), but those for inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were quite different, the Km values of membrane-bound and soluble Type I enzymes being 0.8 microM, while that of soluble Type II was 130 microM. These similarities between the membrane-bound and soluble Type I enzymes suggest that these two molecules may be the same protein, and that concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, both of which are considered to play critical roles in the regulation of intracellular Ca2+-concentration, may be differently regulated by two functionally distinct enzymes.  相似文献   
62.
63.
Abstract: Under typical culture conditions, cerebellar granule cells die abruptly after 17 days in vitro. This burst of neuronal death involves ultrastructural changes and internucleosomal DNA fragmentations characteristic of apoptosis and is effectively arrested by pretreatment with actinomycin-D and cycloheximide. The level of a 38-kDa protein in the particulate fraction is markedly increased during age-induced cell death and by pretreatment with NMDA, which potentiates this cell death. Conversely, the age-induced increment of the 38-kDa particulate protein is suppressed by actinomycin-D and cycloheximide. N-terminal microsequencing of the 38-kDa protein revealed sequence identity with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A GAPDH antisense oligodeoxyribonucleotide blocks age-induced expression of the particulate 38-kDa protein and effectively inhibits neuronal apoptosis. In contrast, the corresponding sense oligonucleotide of GAPDH was completely ineffective in preventing the age-induced neuronal death and the 38-kDa protein overexpression. Moreover, the age-induced expression of the 38-kDa protein is preceded by a pronounced increase in the GAPDH mRNA level, which is abolished by actinomycin-D, cycloheximide, or the GAPDH antisense, but not sense, oligonucleotide. Thus, our results suggest that overexpression of GAPDH in the particulate fraction has a direct role in age-induced apoptosis of cerebellar neurons.  相似文献   
64.
Five-mm sections of elongation zones of Zea mesocotyls wereincubated for designated periods with various concentrationsof IAA. In vitro protein phosphorylation in the soluble fraction(85,000 x g supernatant) prepared from the sections was analyzedby sodium dodecyl sulfate-polyacrylamide gel electrophoresis.The phosphorylation of proteins in the soluble fraction thathad been prepared from sections incubated for 20 min in thepresence of 10{small tilde}s M IAA was greater than that inthe sections incubated for 20 min without IAA. The amount ofphosphorylation of proteins per protein became higher when higherconcentrations increased (10{small tilde}8—10{small tilde}5M).The growth of sections incubated in the presence of 10{smalltilde}8 M IAA or higher concentrations was greater than thatof sections incubated in the absence of IAA. The promotion ofgrowth by IAA was greater at higher concentrations of IAA. Proteinsin the soluble fraction, prepared from sections incubated for20 min in the presence of 10{small tilde}5 M IAA, were phosphorylatedin the presence of either 10 fM cAMP, 10 µM cGMP, 100µM W-7, 100 µM W-5, 20 µM H-7 or 20 µMHA1004. The calmodulin antagonist, W-7, and the inhibitor ofprotein kinase C, H-7, inhibited the phosphorylation of proteinsstimulated by incubation with IAA. These results suggest thatIAA promotes cell elongation via protein phosphorylation thatdepends on calmodulin-dependent protein kinase and protein kinaseC. (Received November 29, 1995; Accepted May 20, 1996)  相似文献   
65.
S Taguchi  A Ozaki  K Nakagawa    H Momose 《Applied microbiology》1996,62(12):4652-4655
Functional mapping was carried out to address the amino acid residues responsible for the activity of the antibacterial peptide apidaecin from the honeybee by an in vivo assay system developed previously. The C-terminal region and many of the proline and arginine residues which are present at high frequency in apidaecin were found to play an important role in its antibacterial activity.  相似文献   
66.
When the fission yeastSchizosaccharomyces pombe is starved for nitrogen, the cells are arrested in the G1 phase, enter the G0 phase and initiate sexual development. Theste13 mutant, however, fails to undergo a G1 arrest when starved for nitrogen and since this mutant phenotype is not suppressed by a mutation in adenylyl cyclase (cyr1), it would appear thatste13 + either acts independently of the decrease in the cellular cAMP level induced by starvation for nitrogen, or functions downstream of this controlling event. We have used functional complementation to clone theste13 + gene from anS. pombe genomic library and show that its disruption is not lethal, indicating that, while the gene is required for sexual development, it is not essential for cell growth. Nucleotide sequencing predicts thatste13 + should encode a protein of 485 amino acids in which the consensus motifs of ATP-dependent RNA helicases of the DEAD box family are completely conserved. Point mutations introduced into these consensus motifs abolished theste13 + functions. The predicted Ste13 protein is 72% identical to theDrosophila melanogaster Me31B protein over a stretch of 391 amino acids. ME31B is a developmentally regulated gene that is expressed preferentially in the female germline and may be required for oogenesis. Expression of ME31B cDNA inS. pombe suppresses theste13 mutation. These two evolutionarily conserved genes encoding putative RNA helicases may play a pivotal role in sexual development.  相似文献   
67.
Enzyme activity, protein contents, and mRNA contents of group II phospholipase A2 (PLA2) in hepatocellular carcinoma (HCC) surgically obtained from 8 patients were compared with those in either its neighboring liver tissues or control liver tissues. The PLA2 specific activity towards the mixed micelles of 1-palmitoyl-2-oleoyl-phosphatidylglycerol and cholate was significantly greater in the tumor tissues (6.62 ± 1.46 nmol/min/mg) than those in the surrounding liver tissues (1.33 ± 0.22 nmol/min/mg) and controls (0.43 ± 0.04 nmol/min/mg). The results of immunoblot analysis using a specific anti-human group II PLA2 antibody and of Northern blot analysis using a human group II PLA2 cDNA as a probe demonstrated that group II PLA2 was responsible for the increased enzyme activity. The contents of immunoreactive group II PLA2 in the tumor tissues (8.81 ± 1.24 ng/mg) were significantly higher than those in the surrounding liver tissues (1.77 ± 0.27 ng/mg); those in the control tissues were below the analytical range of the method used. The group II PLA2 mRNA was also significantly increased in the tumor tissues, compared with that in the surrounding liver tissues, whereas it was not detectable in th controls. This indicates that group II PLA2 in HCC is induced at the pretranslational level.  相似文献   
68.
Ito  Osamu  Matsunaga  Ryoichi  Tobita  Satoshi  Rao  Theertham P.  Devi  Y. Gayatri 《Plant and Soil》1993,155(1):341-344
A medium-duration pigeonpea cultivar (ICP 1–6) and a hybrid sorghum (CSH 5) were grown on a shallow Alfisol in monocropping and intercropping systems. Using a monolith method, spatial distribution of nodulation, acetylene reduction activity (ARA) and root respiration were measured.The number, mass and ARA of nodules decreased exponentially with distance from the plant base except at the late reproductive stage. Nodulation and ARA tended to be higher in the intercrop than in the monocrop.Respiration rate of roots increased with distance from the plant base and reached a maximum value at about 20–30 cm. The rate was higher in pigeonpea than in sorghum and also higher in intercrop than in monocrop.This study suggests that pigeonpea roots are physiologically more active than sorghum roots, implying that pigeonpea may become a strong competitor for nutrients in the soil when intercropped. The nitrogen-fixing ability of pigeonpea may be enhanced by intercropping because the sorghum rapidly absorbed inorganic N which would otherwise inhibit N2 fixation.  相似文献   
69.
The bifunctional enzyme chorismate mutase (CM)-prephenate dehydratase (PD), which is encoded by the pheA gene of Escherichia coli, catalyses the two consecutive key steps in phenylalanine biosynthesis. To utilize the enzyme for metabolic engineering of phenylalanine-producing Corynebacterium glutamicum KY10694, the intact gene was cloned on a multicopy vector to yield pEA11. C. glutamicum cells transformed with pEA11 exhibited a more than tenfold increase in CM and PD activities relative to the host cells. Moreover, the level of pheA expression was further elevated a fewfold when cells were starved of phenylalanine, suggesting that the attenuation regulation of pheA expression functions in heterogeneous C. glutanicum. Plasmid pEA11 encoding the wild-type enzyme was mutated to yield pEA22, which specified CM-PD exhibiting almost complete resistance to end-product inhibition. When pEA22 was introduced into KY10694, both the activities of CM and PD were highly maintained throughout the cultivation, thus leading to a 35% increased production (23 g/l) of phenylalanine.  相似文献   
70.
Nitric Oxide Reversibly Suppresses Xanthine Oxidase Activity   总被引:10,自引:0,他引:10  
The effects of nitric oxide (NO) on xanthine oxidase (XOD) activity and the site(s) of the redox center(s) affected were investigated. XOD activity was determined by superoxide (O2-) generation and uric acid formation. NO reversibly and dose-dependently suppressed XOD activity in both determination methods. The suppression interval also disclosed a dose-dependent prolongation. The suppression occurred irrespective of the presence or absence of xanthine; indicating that the reaction product of NO and O2-, peroxynitrite, is not responsible for the suppression. Application of synthesized peroxynitrite did not affect XOD activity up to 2 μM. Methylene blue, which is an electron acceptor from Fe/S center, prevented the NO-induced inactivation. The results indicate that NO suppresses XOD activity through reversible alteration of the flavin prosthetic site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号