首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3618篇
  免费   293篇
  3911篇
  2022年   20篇
  2021年   43篇
  2020年   23篇
  2019年   24篇
  2018年   45篇
  2017年   39篇
  2016年   58篇
  2015年   106篇
  2014年   116篇
  2013年   209篇
  2012年   170篇
  2011年   154篇
  2010年   83篇
  2009年   105篇
  2008年   147篇
  2007年   160篇
  2006年   182篇
  2005年   182篇
  2004年   168篇
  2003年   186篇
  2002年   168篇
  2001年   133篇
  2000年   146篇
  1999年   100篇
  1998年   48篇
  1997年   55篇
  1996年   43篇
  1995年   51篇
  1994年   37篇
  1993年   26篇
  1992年   86篇
  1991年   83篇
  1990年   69篇
  1989年   76篇
  1988年   74篇
  1987年   55篇
  1986年   44篇
  1985年   44篇
  1984年   34篇
  1983年   28篇
  1982年   21篇
  1981年   19篇
  1980年   18篇
  1979年   30篇
  1978年   20篇
  1975年   14篇
  1974年   26篇
  1973年   19篇
  1972年   17篇
  1967年   13篇
排序方式: 共有3911条查询结果,搜索用时 11 毫秒
181.
Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.  相似文献   
182.

Background

It has recently been suggested that RhoA plays an important role in the enhancement of the Ca2+ sensitization of smooth muscle contraction. In the present study, a participation of RhoA-mediated Ca2+ sensitization in the augmented bronchial smooth muscle (BSM) contraction in a murine model of allergic asthma was examined.

Methods

Ovalbumin (OA)-sensitized BALB/c mice were repeatedly challenged with aerosolized OA and sacrificed 24 hours after the last antigen challenge. The contractility and RhoA protein expression of BSMs were measured by organ-bath technique and immunoblotting, respectively.

Results

Repeated OA challenge to sensitized mice caused a BSM hyperresponsiveness to acetylcholine (ACh), but not to high K+-depolarization. In α-toxin-permeabilized BSMs, ACh induced a Ca2+ sensitization of contraction, which is sensitive to Clostridium botulinum C3 exoenzyme, indicating that RhoA is implicated in this Ca2+ sensitization. Interestingly, the ACh-induced, RhoA-mediated Ca2+ sensitization was significantly augmented in permeabilized BSMs of OA-challenged mice. Moreover, protein expression of RhoA was significantly increased in the hyperresponsive BSMs.

Conclusion

These findings suggest that the augmentation of Ca2+ sensitizing effect, probably via an up-regulation of RhoA protein, might be involved in the enhanced BSM contraction in antigen-induced airway hyperresponsiveness.  相似文献   
183.
Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.  相似文献   
184.
Sakai A  Takasu K  Sawada M  Suzuki H 《PloS one》2012,7(2):e32268
The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK(1). The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders.  相似文献   
185.
The present study was undertaken to characterize the in vivo 1,4-dihydropyridine (DHP) receptor binding of long-acting 1,4-DHP calcium channel antagonists in the mesenteric artery and other tissues of SHR. In vivo specific binding of (+)-[3H]PN 200-110 in the SHR mesenteric artery was significantly (36.6-49.7 %) reduced 1-8 h after oral administration of benidipine (1.84 micromol/kg). A greater reduction in (+)-[3H]PN 200-110 binding in the mesenteric artery was observed at a higher dose (5.53 micromol/kg) of this drug. This dose of benidipine also reduced significantly the in vivo specific (+)-[3H]PN 200-110 binding in the aorta but not in the myocardium and cerebral cortex. Following oral administration of amlodipine (17.6 micromol/kg), a significant (51.7-94.2 %) reduction in (+)-[3H]PN 200-110 binding was seen at 1-18 h in the mesenteric artery and at 1-12 h in the aorta. Only a slight reduction in myocardial and cerebral cortical (+)-[3H]PN 200-110 binding was seen following amlodipine administration. In contrast, oral administration of nifedipine (28.9 micromol/kg) reduced markedly in vivo (+)-[3H]PN 200-110 binding in all the tissues of SHR at 1-6 h, and the degree and time-course of the reduction did not differ significantly among the tissues. The area under the curve (AUC) for the receptor occupancy vs time was calculated from the reduction rate (%) of in vivo specific (+)-[3H]PN 200-110 binding. The ratios of the AUCmesenteric artery to AUCaorta or AUCmesenteric artery to AUCmyocardium after oral administration of benidipine and amlodipine were greater than the corresponding value for nifedipine. The degree and time-course of arterial receptor occupancy by benidipine and amlodipine agreed well with those of their hypotensive effects in the conscious SHR. In conclusion, the present study demonstrates that benidipine and amlodipine may occupy, in a more selective and sustained manner, 1,4-DHP receptors in arterial tissues than in other tissues of SHR, and thus, such receptor binding specificity may be responsible for the long-lasting hypotensive effects of these drugs.  相似文献   
186.
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.  相似文献   
187.
The evolution of sexual dimorphism depends in part on the additive genetic variance-covariance matrices within females, within males, and across the sexes. We investigated quantitative genetics of floral biomass allocation in females and hermaphrodites of gynodioecious Schiedea adamantis (Caryophyllaceae). The G-matrices within females (G(f)), within hermaphrodites (G(m)), and between sexes (B) were compared to those for the closely related S. salicaria, which exhibits a lower frequency of females and less-pronounced sexual dimorphism. Additive genetic variation was detected in all measured traits in S. adamantis, with narrow-sense heritability from 0.34-1.0. Female allocation and floral size traits covaried more tightly than did those traits with allocation to stamens. Between-sex genetic correlations were all <1, indicating sex-specific expression of genes. Common principal-components analysis detected differences between G(f) and G(m) , suggesting potential for further independent evolution of the sexes. The two species of Schiedea differed in G(m) and especially so in G(f) , with S. adamantis showing greater genetic variation in capsule mass and tighter genetic covariation between female allocation traits and flower size in females. Despite greater sexual dimorphism in S. adamantis, genetic correlations between the two sexes (standardized elements of B) were similar to correlations between sexes in S. salicaria.  相似文献   
188.
We evaluated the effect of carotenoids on the dinitrofluorobenzene (DNFB)-induced contact hypersensitivity in mice. Dietary carotenoids significantly inhibited ear swelling and reduced the contents of TNF-α and histamine in the DNFB-treated mice. Our results suggest that dietary carotenoids exerted an anti-inflammatory effect by suppressing mast cell degranulation in vivo.  相似文献   
189.
Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.  相似文献   
190.
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号