首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1477篇
  免费   106篇
  国内免费   1篇
  2021年   18篇
  2020年   11篇
  2019年   15篇
  2018年   18篇
  2017年   15篇
  2016年   35篇
  2015年   37篇
  2014年   54篇
  2013年   102篇
  2012年   89篇
  2011年   84篇
  2010年   44篇
  2009年   52篇
  2008年   73篇
  2007年   73篇
  2006年   69篇
  2005年   66篇
  2004年   74篇
  2003年   68篇
  2002年   52篇
  2001年   47篇
  2000年   32篇
  1999年   29篇
  1998年   19篇
  1997年   14篇
  1996年   9篇
  1995年   8篇
  1994年   15篇
  1993年   12篇
  1992年   32篇
  1991年   32篇
  1990年   30篇
  1989年   28篇
  1988年   26篇
  1987年   15篇
  1986年   13篇
  1985年   16篇
  1984年   15篇
  1983年   14篇
  1982年   10篇
  1981年   7篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1975年   8篇
  1972年   10篇
  1970年   7篇
  1969年   7篇
  1968年   7篇
  1966年   9篇
排序方式: 共有1584条查询结果,搜索用时 15 毫秒
71.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
72.
The first synthesis of the (9R,13R)-stereoisomer of LDS1, a flower-inducing oxylipin isolated from Lemna paucicostata, has been achieved from a known allylic alcohol by a seven-step sequence that involves the Horner–Wadsworth–Emmons olefination to construct its full carbon framework and an enzymatic hydrolysis of a penultimate methyl ester intermediate to provide the target molecule.  相似文献   
73.
74.
75.
Cul5-based complex is a member of ECS (Elongin B/C-Cul2/Cul5-SOCS-box protein) ubiquitin ligase family. The cellular function of the Cul5-based complex is poorly understood. In this study, we found that oocyte septum formation and egg production did not occur in either cul-5- or rbx-2-depleted cul-2 homozygotes, although control cul-2 homozygotes laid approximately 50 eggs. These phenotypes are reminiscent of those caused by the MAP kinase mpk-1 depletion. In fact, activation of MPK-1 was significantly inhibited in cul-5-depleted cul-2 mutant and cul-2-depleted cul-5 mutant. Yeast two-hybrid analysis and RNAi-knockdown experiments suggest that oocyte maturation from pachytene exit and MPK-1 activation are redundantly controlled by the RBX-2-CUL-5- and RBX-1-CUL-2-based complexes.  相似文献   
76.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
77.
MIG-seq (Multiplexed inter-simple sequence repeats genotyping by sequencing) has been developed as a low cost genotyping technology, although the number of polymorphisms obtained is assumed to be minimal, resulting in the low application of this technique to analyses of agricultural plants. We applied MIG-seq to 12 plant species that include various crops and investigated the relationship between genome size and the number of bases that can be stably sequenced. The genome size and the number of loci, which can be sequenced by MIG-seq, are positively correlated. This is due to the linkage between genome size and the number of simple sequence repeats (SSRs) through the genome. The applicability of MIG-seq to population structure analysis, linkage mapping, and quantitative trait loci (QTL) analysis in wheat, which has a relatively large genome, was further evaluated. The results of population structure analysis for tetraploid wheat showed the differences among collection sites and subspecies, which agreed with previous findings. Additionally, in wheat biparental mapping populations, over 3,000 SNPs/indels with low deficiency were detected using MIG-seq, and the QTL analysis was able to detect recognized flowering-related genes. These results revealed the effectiveness of MIG-seq for genomic analysis of agricultural plants with large genomes, including wheat.  相似文献   
78.
In previous work, we clarified the relationship between the productivity and stability of gene-amplified cells and the location of the amplified gene. The location of the amplified gene enabled us to classify resistant cells into two types. One type of resistant cell group, in which the amplified genes were observed near the telomeric region, was named the "telomere type." The other type of cell group, in which the amplified genes were observed in other chromosomal regions, was named the "other type." The phenotypes of these two types of cells are very different. In this experiment, using a fluorescein isothiocyanate-labeled methotrexate (F-MTX) reagent with flow cytometry, we were easily able to distinguish between highly productive cells and the other types of cells. The level of fluorescence differed according to the difference in resistance to MTX. Based on this new finding, highly productive gene-amplified cells could be isolated from heterogeneous gene-amplified cell pools more easily than by the method of limiting-dilution assay. The limiting-dilution method requires several months to obtain highly productive gene-amplified cells, while our flow-cytometry-based method of selection requires only a few weeks.  相似文献   
79.
Apaf-1 and Nod1 are members of a protein family, each of which contains a caspase recruitment domain (CARD) linked to a nucleotide-binding domain, which regulate apoptosis and/or NF-kappaB activation. Nod2, a third member of the family, was identified. Nod2 is composed of two N-terminal CARDs, a nucleotide-binding domain, and multiple C-terminal leucine-rich repeats. Although Nod1 and Apaf-1 were broadly expressed in tissues, the expression of Nod2 was highly restricted to monocytes. Nod2 induced nuclear factor kappaB (NF-kappaB) activation, which required IKKgamma and was inhibited by dominant negative mutants of IkappaBalpha, IKKalpha, IKKbeta, and IKKgamma. Nod2 interacted with the serine-threonine kinase RICK via a homophilic CARD-CARD interaction. Furthermore, NF-kappaB activity induced by Nod2 correlated with its ability to interact with RICK and was specifically inhibited by a truncated mutant form of RICK containing its CARD. The identification of Nod2 defines a subfamily of Apaf-1-like proteins that function through RICK to activate a NF-kappaB signaling pathway.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号