首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1740篇
  免费   152篇
  2022年   8篇
  2021年   24篇
  2020年   8篇
  2019年   16篇
  2018年   27篇
  2017年   22篇
  2016年   40篇
  2015年   51篇
  2014年   81篇
  2013年   88篇
  2012年   113篇
  2011年   88篇
  2010年   51篇
  2009年   63篇
  2008年   89篇
  2007年   77篇
  2006年   85篇
  2005年   75篇
  2004年   94篇
  2003年   90篇
  2002年   94篇
  2001年   65篇
  2000年   65篇
  1999年   52篇
  1998年   28篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   9篇
  1993年   15篇
  1992年   41篇
  1991年   30篇
  1990年   21篇
  1989年   20篇
  1988年   26篇
  1987年   14篇
  1986年   9篇
  1985年   18篇
  1984年   16篇
  1983年   8篇
  1982年   14篇
  1981年   13篇
  1979年   16篇
  1978年   8篇
  1977年   7篇
  1976年   10篇
  1975年   12篇
  1974年   9篇
  1973年   6篇
  1970年   8篇
排序方式: 共有1892条查询结果,搜索用时 880 毫秒
211.
Rice seeds are potentially useful hosts for the production of pharmaceutical proteins. However, low yields of recombinant proteins have been observed in many cases because recombinant proteins compete with endogenous storage proteins. Therefore, we attempt to suppress endogenous seed storage proteins by RNA interference (RNAi) to develop rice seeds as a more efficient protein expression system. In this study, human growth hormone (hGH) was expressed in transgenic rice seeds using an endosperm-specific promoter from a 10 kDa rice prolamin gene. In addition, an RNAi cassette for reduction of endogenous storage protein expressions was inserted into the hGH expression construct. Using this system, the expression levels of 13 kDa prolamin and glutelin were effectively suppressed and hGH polypeptides accumulated to 470 μg/g dry weight at the maximum level in transgenic rice seeds. These results suggest that the suppression of endogenous protein gene expression by RNAi could be of great utility for increasing transgene products.  相似文献   
212.
Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed exclusively in the oocyte within the ovary and plays essential roles in the ovarian function in mammals. However, a possible involvement of GDF-9 in canine ovarian physiology that has a unique ovulation process among mammals has not been studied. Interestingly, we have isolated two types of cDNA clones generated by an alternative splicing from a canine ovarian total RNA. The predominant long form cDNA shares a common precursor structure with GDF-9s in other species whereas the minor short form cDNA has a 172 amino acid truncation in the proregion. Using a transient expression system, we found that the long form cDNA has a defect in mature protein production whereas the short form cDNA readily produces mature protein. However, mutations at one or two N-glycosylation sites in the mature domain of the short form GDF-9 caused a loss in mature protein production. These results suggest that the prodomain and N-linked glycosylation of the mature domain regulate proper processing and secretion of canine GDF-9. Based on the biological functions of GDF-9, these characteristics of canine GDF-9 could be causatively linked to the unique ovulation process in the Canidae.  相似文献   
213.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions. Here, we used a toxicoproteomic approach to understand cellular processes that are affected by NSAIDs in mouse stomach tissue during ulcer formation. We used fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS)-which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry-in this proteomic analysis of pyrolic stomach from control and diclofenac (Dic)-treated mice. FD-LC-MS/MS results were highly sensitive; 10 differentially expressed proteins were identified, and all 10 were more highly expressed in Dic-treated mice than in control mice. Specifically, expression levels of 78 kDa glucose-regulated protein (GRP78), heat shock protein beta-1 (HSP27), and gastrin were more than 3-fold higher in Dic-treated mice than in control mice. This study represents a first step to ascertain the precise actors of early NSAID-induced ulceration.  相似文献   
214.
Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.  相似文献   
215.
216.
Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.  相似文献   
217.
Despite many recent studies of G-protein-coupled receptor (GPCR) structures, it is not yet well understood how these receptors activate G proteins. The GPCR assay using baker's yeast, Saccharomyces cerevisiae, is an effective experimental model for the characterization of GPCR-Gα interactions. Here, using the yeast endogenous Gα protein (Gpa1p) as template, we constructed various chimeric Gα proteins with a region that is considered to be necessary for interaction with mammalian receptors. The signaling assay using the yeast pheromone receptor revealed that the chimeric Gα protein harboring 37 gustducin-specific amino acid residues at its C-terminus (GPA1/gust37) maintained functionality in yeast. In contrast, GPA1/gust44, a variant routinely used in mammalian experimental systems, was not functional.  相似文献   
218.
Our microscopy studies describe the anatomy of extrafloral nectaries on the abaxial side of the basal part of every leaf stalks of Acacia mangium. The lens-like nectary expands with the development of the leafstalk, peaks at the stage at which the leafstalk itself has reached its mature size. The nectary is composed of numerous small parenchyma cells and a nectar cavity in which the nectar is pooled. Those small parenchyma cells are divided into nectariferous tissue and epithelial cells, which line the lumen of the nectar cavity, and secretes the nectar into the same. Each nectary is surrounded by several vascular bundles, which probably afford the nectar. In addition to the microscopic observation, the chemical constituents of the nectar are analyzed by NMR, and it mainly consists of sugars with 60 % sucrose, 25 % glucose and 15 % fructose.  相似文献   
219.
Despite the prognostic importance of mitotic count as one of the components of the Bloom-Richardson grade, several studies have found that pathologists' agreement on the mitotic grade is fairly modest. Collecting a set of more than 4,200 candidate mitotic figures, we evaluate pathologists' agreement on individual figures, and train a computerized system for mitosis detection, comparing its performance to the classifications of three pathologists. The system's and the pathologists' classifications are based on evaluation of digital micrographs of hematoxylin and eosin stained breast tissue. On figures where the majority of pathologists agree on a classification, we compare the performance of the trained system to that of the individual pathologists. We find that the level of agreement of the pathologists ranges from slight to moderate, with strong biases, and that the system performs competitively in rating the ground truth set. This study is a step towards automatic mitosis count to accelerate a pathologist's work and improve reproducibility.  相似文献   
220.
Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein-protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain-containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号