Animals often show left–right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl’s role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity. 相似文献
Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an l-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to l-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.
Expansion of a polyglutamine tract in ataxin-3 (polyQ) causes Machado–Joseph disease, a late-onset neurodegenerative disorder characterized by ubiquitin-positive aggregate formation. Several lines of evidence demonstrate that polyQ also accumulates in mitochondria and causes mitochondrial dysfunction. To uncover the mechanism of mitochondrial quality-control via the ubiquitin–proteasome pathway, we investigated whether MITOL, a novel mitochondrial ubiquitin ligase localized in the mitochondrial outer membrane, is involved in the degradation of pathogenic ataxin-3 in mitochondria. In this study, we used N-terminal-truncated pathogenic ataxin-3 with a 71-glutamine repeat (ΔNAT-3Q71) and found that MITOL promoted ΔNAT-3Q71 degradation via the ubiquitin–proteasome pathway and attenuated mitochondrial accumulation of ΔNAT-3Q71. Conversely, MITOL knockdown induced an accumulation of detergent-insoluble ΔNAT-3Q71 with large aggregate formation, resulting in cytochrome c release and subsequent cell death. Thus, MITOL plays a protective role against polyQ toxicity, and thereby may be a potential target for therapy in polyQ diseases. Our findings indicate a protein quality-control mechanism at the mitochondrial outer membrane via a MITOL-mediated ubiquitin–proteasome pathway. 相似文献
So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5'-O-3-thio-triphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids. 相似文献
To improve the metabolic stability of 3, which exhibited both in vitro antitumor activity and in vivo efficacy by both iv and po administration, we designed and synthesized new taxane analogues. Most of the synthetic compounds maintained excellent antitumor activity and were scarcely metabolized by human liver microsomes. And some compounds exhibited potent antitumor effects against B16 melanoma BL6 in vivo by both iv and po administration similarly to 3. 相似文献
A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20 s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis. 相似文献
In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea
chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This
was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears
the RuBisCO cbbL gene relevant to autotrophic CO2 fixation. 相似文献
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth. 相似文献
Dragonflies are colorful insects, and recent RNA sequencing studies have identified a number of candidate genes potentially involved in their color pattern formation and color vision. However, functional aspects of such genes have not been assessed due to the lack of molecular genetic tools applicable to dragonflies. We established an electroporation-mediated RNA interference (RNAi) procedure using the tiny dragonfly Nannophya pygmaea Rambur, 1842 (Odonata: Libellulidae) that targets the multicopper oxidase 2 gene (MCO2; also known as laccase2 gene) responsible for cuticular pigmentation in many insects. RNA sequencing of N. pygmaea and genomic survey of the dragonfly Ladona fulva identified four multicopper oxidase family genes: MCO1, MCO2, MCO3 and multicopper oxidase-related protein gene (MCORP). In N. pygmaea, MCO2 was specifically expressed around the cuticular pigmentation period, whereas MCO1 was constantly expressed. MCORP was expressed at adult stages, and MCO3 was scarcely expressed. When we applied in vivo electroporation, final instar larvae injected with MCO2 small interfering RNA became adults with patchy unpigmented regions. RNAi without in vivo electroporation did not affect cuticular pigmentation, suggesting that dragonflies do not show a systemic RNAi response. These results indicate that MCO2 is required for cuticular pigmentation across diverse insects, and highlight the usefulness of the electroporation-mediated RNAi method in dragonflies. 相似文献
ABSTRACTThe nematocidal activities of the fatty acid esters of d-allose were examined using the larvae of C. elegans. Among the fatty acid esters, 6-O-octanoyl-d-allose (3) showed significant activity. 6-O-octanoyl-d-glucose (5) showed no activity, indicating that the D-allose moiety is essential for the nematocidal activity of 3. A nonhydrolyzable alkoxy analog 6-O-octyl-d-allose (6) also showed activity equivalent to that of 3. 相似文献