首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3594篇
  免费   192篇
  国内免费   2篇
  3788篇
  2023年   13篇
  2022年   36篇
  2021年   77篇
  2020年   39篇
  2019年   40篇
  2018年   70篇
  2017年   45篇
  2016年   127篇
  2015年   143篇
  2014年   174篇
  2013年   301篇
  2012年   259篇
  2011年   237篇
  2010年   152篇
  2009年   145篇
  2008年   212篇
  2007年   188篇
  2006年   173篇
  2005年   171篇
  2004年   172篇
  2003年   147篇
  2002年   151篇
  2001年   31篇
  2000年   37篇
  1999年   33篇
  1998年   34篇
  1997年   30篇
  1996年   28篇
  1995年   31篇
  1994年   33篇
  1993年   25篇
  1992年   29篇
  1991年   30篇
  1990年   29篇
  1989年   30篇
  1988年   24篇
  1987年   22篇
  1986年   17篇
  1985年   23篇
  1984年   18篇
  1983年   19篇
  1982年   16篇
  1981年   27篇
  1980年   24篇
  1979年   15篇
  1978年   13篇
  1977年   13篇
  1976年   13篇
  1974年   13篇
  1973年   13篇
排序方式: 共有3788条查询结果,搜索用时 0 毫秒
991.
Whole cells expressing the non-heme diiron hydroxylases AlkB and toluene 4-monooxygenase (T4MO) were used to probe enzyme reaction mechanisms. AlkB catalyzes the hydroxylation of the radical clock substrates bicyclo[4.1.0]heptane (norcarane), spirooctane and 1,1-diethylcyclopropane, and does not catalyze the hydroxylation of the radical clocks 1,1-dimethylcyclopropane or 1,1,2,2-tetramethylcyclopropane. The hydroxylation of norcarane yields a distribution of products consistent with an "oxygen-rebound" mechanism for the enzyme in both the wild type Pseudomonas putida GPo1 and AlkB from P. putida GPo1 expressed in Escherichia coli. Evidence for the presence of a substrate-based radical during the reaction mechanism is clear. With norcarane, the lifetime of that radical varies with experimental conditions. Experiments with higher substrate concentrations yield a shorter radical lifetime (approximately 1 ns), while experiments with lower substrate concentrations yield a longer radical lifetime (approximately 19 ns). Consistent results were obtained using either wild type or AlkB-equipped host organisms using either "resting cell" or "growing cell" approaches. T4MO expressed in E. coli also catalyzes the hydroxylation of norcarane with a radical lifetime of approximately 0.07 ns. No radical lifetime dependence on substrate concentration was seen. Results from experiments with diethylcyclopropane, spirooctane, dimethylcyclopropane, and diethylcyclopropane are consistent with a restricted active site for AlkB.  相似文献   
992.
Vascular endothelial growth factor C (VEGF-C) and its receptor VEGFR-3 mediate lymphangiogenesis. In this study, we analyzed the expression of VEGF-C and VEGFR-3 as well as lymphatic vessels in the pterygium and normal conjunctiva of humans. Fifteen primary nasal pterygia and three normal bulbar conjunctivas, surgically removed, were examined in this study. The lymphatic vessel density (LVD) and blood vessel density were determined by the immunolabeling of D2-40 and CD31, markers for lymphatic and blood vessels, respectively. VEGF-C and VEGFR-3 expression in pterygial and conjunctival tissue proteins was detected by Western blotting and were evaluated using immunohistochemistry. The LVD was significantly higher in the pterygium than normal conjunctiva (p < 0.05). Western blot demonstrated high-level expression of VEGF-C and VEGFR-3 in the pterygium compared with normal conjunctiva. VEGF-C immunoreactivity was detected in the cytoplasm of pterygial and normal conjunctival epithelial cells. The number of VEGF-C-immunopositive cells in pterygial epithelial cells was significantly higher than in normal conjunctival cells (p < 0.05). VEGFR-3 immunoreactivity was localized in the D2-40-positive lymphatic endothelial cells. The present findings suggest the potential role of VEGF-C in the pathogenesis and development of a pterygium through lymphangiogenesis and the VEGF-C/VEGFR-3 pathway as a novel therapeutic target for the human pterygium.  相似文献   
993.
Information about phosphorylation status can be used to prioritize and characterize biological processes in the cell. Various analytical strategies have been proposed to address the complexity of phosphorylation status and comprehensively identify phosphopeptides. In this study, we evaluated four strategies for phosphopeptide enrichment, using titanium dioxide (TiO2) and Phos-tag ligand particles from in-gel or in-solution digests prior to mass spectrometry-based analysis. Using TiO2 and Phos-tag magnetic beads, it was possible to enrich phosphopeptides from in-gel digests of phosphorylated ovalbumin separated by Phos-tag SDS-PAGE or in-solution serum digests, while minimizing non-specific adsorption. The tip-column strategy with TiO2 particles enabled enrichment of phosphopeptides from in-solution digests of whole-cell lysates with high efficiency and selectivity. However, the tip-column strategy with Phos-tag agarose beads yielded the greatest number of identified phosphopeptides. The strategies using both types of tip columns had a high degree of overlap, although there were differences in selectivity between the identified phosphopeptides. Together, our results indicate that multi-enrichment strategies using TiO2 particles and Phos-tag agarose beads are useful for comprehensive phosphoproteomic analysis.  相似文献   
994.
995.
Summary We have established a unique betalain pigmentation system in callus cultures that originated from seedlings of Portulaca sp. Jewel. Within three different Jewel lines examined, one line (JR) was clearly superior with regard to callus growth rate and pigment formation. Furthermore, after ten cycles of selection of deeply colored callus patches, the selected clones contained on an average four times the amount of betalain as compared to the non-selected mother line. The colorization was induced by light, but disappeared in the dark. Pigment synthesis was detectable within 30 h after irradiation and showed positive correlation with irradiation periods.Abbreviations 2,4-D 2,4-dichlorophenoxy-acetic acid - HPLC high performance liquid chromatography  相似文献   
996.
Spatial metabolomics uses imaging mass spectrometry (IMS) to localize metabolites within tissue section. Here, we performed matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance-IMS (MALDI-FTICR-IMS) to identify the localization of asparaptine A, a naturally occurring inhibitor of angiotensin-converting enzyme, in green spears of asparagus (Asparagus officinalis). Spatial metabolome data were acquired in an untargeted manner. Segmentation analysis using the data characterized tissue-type-dependent and independent distribution patterns in cross-sections of asparagus spears. Moreover, asparaptine A accumulated at high levels in developing lateral shoot tissues. Quantification of asparaptine A in lateral shoots using liquid chromatography-tandem mass spectrometry (LC-MS/MS) validated the IMS analysis. These results provide valuable information for understanding the function of asparaptine A in asparagus, and identify the lateral shoot as a potential region of interest for multiomics studies to examine gene-to-metabolite associations in the asparaptine A biosynthesis.  相似文献   
997.
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.  相似文献   
998.
Familial Alzheimer disease-causing mutations in the presenilins increase production of longer pathogenic amyloid beta-peptides (A beta(42/43)) by altering gamma-secretase activity. The mechanism underlying this effect remains unknown, although it has been proposed that heteromeric macromolecular complexes containing presenilins mediate gamma-secretase cleavage of the amyloid beta-precursor protein. Using a random mutagenesis screen of presenilin-1 (PS1) for PS1 endoproteolysis-impairing mutations, we identified five unique mutants, including R278I-PS1 and L435H-PS1, that exclusively generated a high level of A beta43, but did not support physiological PS1 endoproteolysis or A beta40 generation. These mutants did not measurably alter the molecular size or subcellular localization of PS1 complexes. Pharmacological studies indicated that the up-regulation of activity for A beta43 generation by these mutations was not further enhanced by the difluoroketone inhibitor DFK167 and was refractory to inhibition by sulindac sulfide. These results suggest that PS1 mutations can lead to a wide spectrum of changes in the activity and specificity of gamma-secretase and that the effects of PS1 mutations and gamma-secretase inhibitors on the specificity are mediated through a common mechanism.  相似文献   
999.
We found N-methyl-L-amino acid dehydrogenase activity in various bacterial strains, such as Pseudomonas putida and Bacillus alvei, and cloned the gene from P. putida ATCC12633 into Escherichia coli. The enzyme purified to homogeneity from recombinant E. coli catalyzed the NADPH-dependent formation of N-alkyl-L-amino acids from the corresponding alpha-oxo acids (e.g. pyruvate, phenylpyruvate, and hydroxypyruvate) and alkylamines (e.g. methylamine, ethylamine, and propylamine). Ammonia was inert as a substrate, and the enzyme was clearly distinct from conventional NAD(P)-dependent amino acid dehydrogenases, such as alanine dehydrogenase (EC 1.4.1.1). NADPH was more than 300 times more efficient than NADH as a hydrogen donor in the enzymatic reductive amination. Primary structure analysis revealed that the enzyme belongs to a new NAD(P)-dependent oxidoreductase superfamily, the members of which show no sequence homology to conventional NAD(P)-dependent amino acid dehydrogenases and opine dehydrogenases.  相似文献   
1000.
Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号