首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1911篇
  免费   110篇
  2021篇
  2023年   12篇
  2022年   28篇
  2021年   58篇
  2020年   29篇
  2019年   27篇
  2018年   52篇
  2017年   33篇
  2016年   81篇
  2015年   95篇
  2014年   110篇
  2013年   177篇
  2012年   170篇
  2011年   157篇
  2010年   96篇
  2009年   87篇
  2008年   118篇
  2007年   101篇
  2006年   85篇
  2005年   94篇
  2004年   88篇
  2003年   70篇
  2002年   60篇
  2001年   9篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   13篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1977年   3篇
  1973年   7篇
  1967年   3篇
  1966年   2篇
  1964年   2篇
排序方式: 共有2021条查询结果,搜索用时 15 毫秒
141.
Group VIB Ca2+-independent phospholipase A2γ (iPLA2γ) is a membrane-bound iPLA2 enzyme with unique features, such as the utilization of distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. Here we investigated the physiological functions of iPLA2γ by disrupting its gene in mice. iPLA2γ-knockout (KO) mice were born with an expected Mendelian ratio and appeared normal and healthy at the age of one month but began to show growth retardation from the age of two months as well as kyphosis and significant muscle weakness at the age of four months. Electron microscopy revealed swelling and reduced numbers of mitochondria and atrophy of myofilaments in iPLA2γ-KO skeletal muscles. Increased lipid peroxidation and the induction of several oxidative stress-related genes were also found in the iPLA2γ-KO muscles. These results provide evidence that impairment of iPLA2γ causes mitochondrial dysfunction and increased oxidative stress, leading to the loss of skeletal muscle structure and function. We further found that the compositions of cardiolipin and other phospholipid subclasses were altered and that the levels of myoprotective prostanoids were reduced in iPLA2γ-KO skeletal muscle. Thus, in addition to maintenance of homeostasis of the mitochondrial membrane, iPLA2γ may contribute to modulation of lipid mediator production in vivo.  相似文献   
142.
The TSGA10 gene was originally isolated in normal testis by differential mRNA display. TSGA10 is located on chromosome 2q11.2 and consists of 19 exons extending over 3 kb. TSGA10 mRNA expression was investigated in normal and malignant tissues using quantitative real-time RT-PCR. It was predominantly expressed in the testis in adult normal tissues. In malignant tissues, TSGA10 was over-expressed in 4 of 20 hepatocellular carcinomas (HCC), 1 of 20 colon cancers, 7 of 20 ovarian cancers, 3 of 20 prostate cancers, 1 of 21 malignant melanomas, and 8 of 21 bladder cancers. Serological analysis revealed that 3 out of 346 patients with various types of cancer possessed antibody against recombinant TSGA10 protein. They included 2 patients with hepatocellular carcinoma and a patient with malignant melanoma.  相似文献   
143.
Mesenchymal stem cells (MSC) show a very short proliferative life span and readily lose the differentiation potential in culture. However, the growth rate and the proliferative life span of the stem cells markedly increased using tissue culture dishes coated with a basement membrane-like extracellular matrix, which was produced by PYS-2 cells or primary endothelial cells. Furthermore, the stem cells expanded on the extracellular matrix, but not those on plastic tissue culture dishes, retained the osteogenic, chondrogenic, and adipogenic potential throughout many mitotic divisions. The extracellular matrix had greater effects on the proliferation of MSC and the maintenance of the multi-lineage differentiation potential than basic fibroblast growth factor. Mesenchymal stem cells expanded on the extracellular matrix should be useful for regeneration of large tissue defects and repeated cell therapies, which require a large number of stem or progenitor cells.  相似文献   
144.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   
145.
The potential contamination of human blood or plasma with prions, such as variant Creuftzfelt-Jacob disease (vCJD), is becoming a serious problem. In this study, we established a Western blot-based detection method for PrP(Sc) (263K) spiked in plasma. Although plasma contains a large amount of protein, specific detection of a small amount of 263K in plasma could be specifically detected only after ultra-centrifugation followed by heat-denaturation of plasma proteins included in the resulting precipitate, before the digestion with proteinase K.  相似文献   
146.
The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.  相似文献   
147.
Mononuclear cells infiltrating the interstitium are involved in renal tubulointerstitial injury. The unilateral ureteral obstruction (UUO) is an established experimental model of renal interstitial inflammation. In our previous study, we postulated that L-selectin on monocytes is involved in their infiltration into the interstitium by UUO and that a sulfated glycolipid, sulfatide, is the physiological L-selectin ligand in the kidney. Here we tested the above hypothesis using sulfatide- and L-selectin-deficient mice. Sulfatide-deficient mice were generated by gene targeting of the cerebroside sulfotransferase (Cst) gene. Although the L-selectin-IgG chimera protein specifically bound to sulfatide fraction in acidic lipids from wild-type kidney, it did not show such binding in fractions of Cst(-/-) mice kidney, indicating that sulfatide is the major L-selectin-binding glycolipid in the kidney. The distribution of L-selectin ligand in wild-type mice changed after UUO; sulfatide was relocated from the distal tubules to the peritubular capillaries where monocytes infiltrate, suggesting that sulfatide relocated to the endothelium after UUO interacted with L-selectin on monocytes. In contrast, L-selectin ligand was not detected in Cst(-/-) mice irrespective of UUO treatment. Compared with wild-type mice, Cst(-/-) mice showed a considerable reduction in the number of monocytes/macrophages that infiltrated the interstitium after UUO. The number of monocytes/macrophages was also reduced to a similar extent in L-selectin(-/-) mice. Our results suggest that sulfatide is a major L-selectin-binding molecule in the kidney and that the interaction between L-selectin and sulfatide plays a critical role in monocyte infiltration into the kidney interstitium.  相似文献   
148.
The marine cyanobacterium Prochlorococcus marinus accumulates divinyl chlorophylls instead of monovinyl chlorophylls to harvest light energy. As well as this difference in its chromophore composition, some amino acid residues in its photosystem II D1 protein were different from the conserved amino acid residues in other photosynthetic organisms. We examined PSII complexes isolated from mutants of Synechocystis sp. PCC 6803, in which chromophore and D1 protein were altered (Hisashi Ito and Ayumi Tanaka, 2011) to clarify the effects of chromophores/D1 protein composition on the excitation energy distribution. We prepared the mutants accumulating divinyl chlorophyll (DV mutant). The amino acid residues of V205 and G282 in the D1 protein were substituted with M205 and C282 in the DV mutant to mimic Prochlorococcus D1 protein (DV-V205M/G282C mutant). Isolated PSII complexes were analyzed by time-resolved fluorescence spectroscopy. Energy transfer in CP47 was interrupted in PSII containing divinyl chlorophylls. The V205M/G282C mutation did not recover the energy transfer pathway in CP47, instead, the mutation allowed the excitation energy transfer from CP43 to CP47, which neighbors in the PSII dimer. Mutual orientation of the subcomplexes of PSII might be affected by the substitution. The changes of the energy transfer pathways would reduce energy transfer from antennae to the PSII reaction center, and allow Prochlorococcus to acquire light tolerance.  相似文献   
149.
The enzyme NAD-dependent sorbitol dehydrogenase (SDH) is well characterized in the Rosaceae family of fruit trees, which synthesizes sorbitol as a translocatable photosynthate. Expressed sequence tags of SDH-like sequences have also been generated from various non-Rosaceae species that do not synthesize sorbitol as a primary photosynthetic product, but the physiological roles of the encoded proteins in non-Rosaceae plants are unknown. Therefore, we isolated an SDH-like cDNA (SDL) from tomato (Lycopersicon esculentum Mill.). Genomic Southern blot analysis suggested that SDL exists in the tomato genome as a single-copy gene. Northern blot analysis showed that SDL is ubiquitously expressed in tomato plants. Recombinant SDL protein was produced and purified for enzymatic characterization. SDL catalyzed the interconversion of sorbitol and fructose with NAD (H). SDL showed highest activity for sorbitol among the several substrates tested. SDL showed no activity with NADP+. Thus, SDL was identified as a SDH, although the Km values and substrate specificity of SDL were significantly different from those of SDH purified from the Japanese pear (Pyrus pyrifolia), a Rosaceae fruit tree. In addition, tomato was transformed with antisense SDL to evaluate the contribution of SDL to SDH activity in tomato. The transformation decreased SDH activity to approximately 50% on average. Taken together, these results provide molecular evidence of SDH in tomato, and SDL was renamed LeSDH.  相似文献   
150.
The human synovium contains mesenchymal stem cells (MSCs), which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs) have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号