首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   6篇
  107篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   9篇
  2012年   13篇
  2011年   12篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
91.
Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.  相似文献   
92.
Related exosome complexes of 3'-->5' exonucleases are present in the nucleus and the cytoplasm. Purification of exosome complexes from whole-cell lysates identified a Mg(2+)-labile factor present in substoichiometric amounts. This protein was identified as the nuclear protein Yhr081p, the homologue of human C1D, which we have designated Rrp47p (for rRNA processing). Immunoprecipitation of epitope-tagged Rrp47p confirmed its interaction with the exosome and revealed its association with Rrp6p, a 3'-->5' exonuclease specific to the nuclear exosome fraction. Northern analyses demonstrated that Rrp47p is required for the exosome-dependent processing of rRNA and small nucleolar RNA (snoRNA) precursors. Rrp47p also participates in the 3' processing of U4 and U5 small nuclear RNAs (snRNAs). The defects in the processing of stable RNAs seen in rrp47-Delta strains closely resemble those of strains lacking Rrp6p. In contrast, Rrp47p is not required for the Rrp6p-dependent degradation of 3'-extended nuclear pre-mRNAs or the cytoplasmic 3'-->5' mRNA decay pathway. We propose that Rrp47p functions as a substrate-specific nuclear cofactor for exosome activity in the processing of stable RNAs.  相似文献   
93.
The structure, diversity and spatial distribution of the amphipod fauna associated with Posidonia oceanica meadows were studied along the Tunisian coasts in 2007. Samples were collected in nine different meadows at 2 m depth. A total of 44 species belonging to 12 families were collected. The most common species in terms of abundance were Ampithoe helleri, Hyale camptonyx and Ericthonius punctatus. The highest values of abundance and species richness and the lowest values of diversity and equitability were found in meadows with high epiphyte biomass. Multivariate analyses of data indicated that epiphyte biomass and geographical position were major determinants of the distribution and composition of amphipod assemblages along Tunisian coasts. The presence of two lessepsian amphipod species in one of the southern Posidonia oceanica meadows modified the structure of assemblage.  相似文献   
94.
The Homez gene encodes a protein with three atypical homeodomains and two leucine zipper motifs of unknown function. Here we show that during neurula stages, Xenopus Homez is broadly expressed throughout the neural plate, the strongest expression being detected in the domains where primary neurons arise. At later stages, Homez is maintained throughout the central nervous system in differentiating progenitors. In accordance with this expression, Homez is positively regulated by neural inducers and by Ngnr1 and negatively by Notch signaling. Interference with Homez function in embryos by injection of an antisense morpholino oligonucleotide results in the specific disruption of the expression of late neuronal markers, without affecting the expression of earlier neuronal and early neurectodermal markers. Consistent with this finding, Homez inhibition also interferes with the expression of late neuronal markers in Ngnr1 overexpressing animal cap explants and in Notch inhibited embryos. In gain of function experiments, Homez inhibits the expression of late neuronal markers but has no effect on earlier ones. These data suggest a role for Homez in neuronal development downstream of proneural/neurogenic genes.  相似文献   
95.
On attempts to identify toxins showing original profile of activity among K+ channels, we purified Kbot1, a scorpion toxin that blocks Kv1 and SK potassium channels. With 28 amino-acid residues, Kbot1 is the shortest toxin sequenced in Buthus occitanus scorpion. It is linked by three disulfide bridges and its primary structure is 93% identical to that of BmP02 isolated from the venom of the Chinese scorpion Buthus martensi Karsch [Eur. J. Biochem. 245 (1996) 457]. Kbot1 exhibited a low neurotoxicity in mice after intracerebroventricular injection (LD50 approximately or = 0.8 microg per mouse). It competes with iodinated apamin for its rat brain synaptosomal membrane-binding site (IC50 of 20 nM). Despite 30% sequence identity between Kbot1 and ChTX, competitive experiments on the [125I] charybdotoxin, show that Kbot1 inhibits its binding to its rat brain synaptosomes with IC50 of 10 nM. This result was supported by electrophysiological experiments on cloned voltage-dependent K+ channels from rat brain, expressed in Xenopus oocytes. Kbot1 blocks Kv1.1, Kv1.2 and Kv1.3 currents with IC50 of 145, 2.5 and 15 nM, respectively. Based on these data, Kbot1 may be considered as the first member of subfamily 9 of scorpion toxins [Trends Pharmacol. Sci. 20 (1999) 444], highly active on both Kv and SK channels.  相似文献   
96.
We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity.  相似文献   
97.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   
98.
An extracellular bleach stable protease producing strain was isolated from marine water sample and identified as Bacillus mojavensis A21 on the basis of the 16S rRNA gene sequencing and biochemical properties. The A21 alkaline protease was purified from the culture supernatant to homogeneity using acetone precipitation, Sephadex G-75 gel filtration and CM-Sepharose ion exchange chromatography, with a 6.43-fold increase in specific activity and 16.56% recovery. The molecular weight of the purified enzyme was estimated to be 20 kDa by SDS-PAGE and gel filtration. The enzyme was highly active over a wide range of pH from 7.0 to 13.0, with an optimum at pH 8.5. The relative activities at pH 11.0 and 12.0 were about 80 and 71.7% of that obtained at pH 8.5. The enzyme was extremely stable in the pH range of 7.0–12.0. It exhibited maximal activity at 60 °C. The thermostability of the enzyme was significantly increased by the addition of CaCl2. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease.The N-terminal amino acid sequence of the first 20 amino acids of the purified protease was DINGGGATLPQKLYQTSGVL. B. mojavensis A21 protease showed low homology with bacterial peptidases, suggesting that the enzyme is a new protease.The alkaline protease showed high stability towards anionic (0.1% SDS) and non-ionic (1 and 5% Tween 80 and 1% Triton X-100) surfactants. In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 79 and 70% of its initial activity after 1 h incubation in the presence of 1% H2O2 and 0.1% sodium perborate, respectively. The enzyme showed excellent stability with a wide range of commercial solid and liquid detergents at 30 and 40 °C. Considering its promising properties, B. mojavensis A21 may find potential application in laundry detergents.  相似文献   
99.
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.  相似文献   
100.
The dengue virus (DV) is an important human pathogen from the Flavivirus genus, whose genome- and antigenome RNAs start with the strictly conserved sequence pppAG. The RNA-dependent RNA polymerase (RdRp), a product of the NS5 gene, initiates RNA synthesis de novo, i.e., without the use of a pre-existing primer. Very little is known about the mechanism of this de novo initiation and how conservation of the starting adenosine is achieved. The polymerase domain NS5PolDV of NS5, upon initiation on viral RNA templates, synthesizes mainly dinucleotide primers that are then elongated in a processive manner. We show here that NS5PolDV contains a specific priming site for adenosine 5′-triphosphate as the first transcribed nucleotide. Remarkably, in the absence of any RNA template the enzyme is able to selectively synthesize the dinucleotide pppAG when Mn2+ is present as catalytic ion. The T794 to A799 priming loop is essential for initiation and provides at least part of the ATP-specific priming site. The H798 loop residue is of central importance for the ATP-specific initiation step. In addition to ATP selection, NS5PolDV ensures the conservation of the 5′-adenosine by strongly discriminating against viral templates containing an erroneous 3′-end nucleotide in the presence of Mg2+. In the presence of Mn2+, NS5PolDV is remarkably able to generate and elongate the correct pppAG primer on these erroneous templates. This can be regarded as a genomic/antigenomic RNA end repair mechanism. These conservational mechanisms, mediated by the polymerase alone, may extend to other RNA virus families having RdRps initiating RNA synthesis de novo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号