首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1979年   1篇
  1978年   1篇
  1940年   1篇
  1928年   1篇
  1922年   2篇
  1916年   1篇
  1913年   1篇
  1912年   3篇
  1911年   2篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
41.
For more than a century, the common ancestor of flowering plants was thought to have had a seven-celled, eight-nucleate Polygonum-type female gametophyte. It is now evident that not one, but in fact three, patterns of female gametophyte development and mature structure characterize the common ancestors of the four most ancient clades of extant angiosperms: Amborella-type, Nuphar/Schisandra-type and Polygonum-type. The Amborella-type female gametophyte is restricted to a single extant species, Amborella trichopoda, and at maturity consists of eight cells and nine nuclei. Development of the Amborella-type gametophyte is essentially identical to the Polygonum-type except that there is an additional and asynchronous cell division at the micropylar pole prior to maturation that produces a third synergid and the egg cell. The Nuphar/Schisandra-type female gametophyte is four-nucleate and four-celled and at maturity contains a typical three-celled egg apparatus and a central cell with a single haploid polar nucleus. This type of gametophyte appears to be universal among extant members of the Nymphaeales (including Hydatellaceae) and Austrobaileyales. Based on explicit reconstruction of character distribution and evolution, the Polygonum-type female gametophyte is certain to be representative of the common ancestors of monocots, eudicots, magnoliids, Ceratophyllaceae, and Chloranthaceae. There are compelling biological reasons to suggest that the four-celled, four-nucleate female gametophyte (as found in Nymphaeales and Austrobaileyales) is ancestral among angiosperms, with transitions to Polygonum-type female gametophytes separately in the Amborellales and in the ancient angiosperm clade that includes all angiosperms except Amborella, Nymphaeales, and Austrobaileyales. Subsequent to the evolution of a seven-celled, eight-nucleate Polygonum-type female gametophyte in the Amborellales, we hypothesize that a peramorphic increase in egg apparatus cell number took place and led to the unique situation in which there are three synergids in Amborella trichopoda.  相似文献   
42.
43.

Background

Previous meta-analyses of treatments for pulmonary arterial hypertension (PAH) have not shown mortality benefit from any individual class of medication.

Methods

MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched from inception through November 2009 for randomized trials that evaluated any pharmacotherapy in the treatment of PAH. Reference lists from included articles and recent review articles were also searched. Analysis included randomized placebo controlled trials of at least eight weeks duration and studies comparing intravenous medication to an unblinded control group.

Results

1541 unique studies were identified and twenty-four articles with 3758 patients were included in the meta-analysis. Studies were reviewed and data extracted regarding study characteristics and outcomes. Data was pooled for three classes of medication: prostanoids, endothelin-receptor antagonists (ERAs), and phosphodiesterase type 5 (PDE5) inhibitors. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated for mortality, 6-minute walk distance, dyspnea scores, hemodynamic parameters, and adverse effects. Mortality in the control arms was a combined 4.2% over the mean study length of 14.9 weeks. There was significant mortality benefit with prostanoid treatment (RR 0.49, CI 0.29 to 0.82), particularly comparing intravenous agents to control (RR 0.30, CI 0.14 to 0.63). Mortality benefit was not observed for ERAs (RR 0.58, CI 0.21 to 1.60) or PDE5 inhibitors (RR 0.30, CI 0.08 to 1.08). All three classes of medication improved other clinical and hemodynamic endpoints. Adverse effects that were increased in treatment arms include jaw pain, diarrhea, peripheral edema, headache, and nausea in prostanoids; and visual disturbance, dyspepsia, flushing, headache, and limb pain in PDE5 inhibitors. No adverse events were significantly associated with ERA treatment.

Conclusions

Treatment of PAH with prostanoids reduces mortality and improves multiple other clinical and hemodynamic outcomes. ERAs and PDE5 inhibitors improve clinical and hemodynamic outcomes, but have no proven effect on mortality. The long-term effects of all PAH treatment requires further study.  相似文献   
44.

Background  

A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins.  相似文献   
45.

Background

16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events.

Results

Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release.

Conclusion

The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16.  相似文献   
46.
47.
Cells metabolize nutrients through a complex metabolic and signaling network that governs redox homeostasis. At the core of this, redox regulatory network is a mutually inhibitory relationship between reduced glutathione and reactive oxygen species (ROS)—two opposing metabolites that are linked to upstream nutrient metabolic pathways (glucose, cysteine, and glutamine) and downstream feedback loops of signaling pathways (calcium and NADPH oxidase). We developed a nutrient‐redox model of human cells to understand system‐level properties of this network. Combining in silico modeling and ROS measurements in individual cells, we show that ROS dynamics follow a switch‐like, all‐or‐none response upon glucose deprivation at a threshold that is approximately two orders of magnitude lower than its physiological concentration. We also confirm that this ROS switch can be irreversible and exhibits hysteresis, a hallmark of bistability. Our findings evidence that bistability modulates redox homeostasis in human cells and provide a general framework for quantitative investigations of redox regulation in humans.  相似文献   
48.
49.
BackgroundDespite direct-acting antivirals (DAA), aims to “eradicate” viral hepatitis by 2030 remain unlikely. In Nepal, an expert consortium was established to treat HCV through Nepal earthquakes aftermath offering a model for HCV treatment expansion in a resource-poor setting.Methodology/Principal findingsIn 2015, we established a network of hepatologists, laboratory experts, and community-based leaders at 6 Opioid Substitution Treatment (OST) sites from 4 cities in Nepal screening 838 patients for a treatment cohort of 600 individuals with HCV infection and past or current drug use. During phase 1, patients were treated with interferon-based regimens (n = 46). During phase 2, 135 patients with optimal predictors (HIV controlled, without cirrhosis, low baseline HCV viral load) were treated with DAA-based regimens. During phase 3, IFN-free DAA treatment was expanded, regardless of HCV disease severity, HIV viremia or drug use. Sustained virologic response (SVR) was assessed at 12 weeks.Median age was 37 years and 95.5% were males. HCV genotype was 3 (53.2%) or 1a (40.7%) and 32% had cirrhosis; 42.5% were HIV-HCV coinfected. The intention-to-treat (ITT) SVR rates in phase 2 and 3 were 97% and 81%, respectively. The overall per-protocol and ITT SVR rates were 97% and 85%, respectively. By multivariable analysis, treatment at the Kathmandu site was protective and substance use, treatment during phase 3 were associated with failure to achieve SVR.Conclusions/SignificanceVery high SVR rates may be achieved in a difficult-to-treat, low-income population whatever the patient’s profile and disease severity. The excellent treatment outcomes observed in this real-life community study should prompt further HCV treatment initiatives in Nepal.  相似文献   
50.

Background

Discovering sequence patterns with variation can unveil functions of a protein family that are important for drug discovery. Exploring protein families using existing methods such as multiple sequence alignment is computationally expensive, thus pattern search, called motif finding in Bioinformatics, is used. However, at present, combinatorial algorithms result in large sets of solutions, and probabilistic models require a richer representation of the amino acid associations. To overcome these shortcomings, we present a method for ranking and compacting these solutions in a new representation referred to as Aligned Pattern Clusters (APCs). To tackle the problem of a large solution set, our method reveals a reduced set of candidate solutions without losing any information. To address the problem of representation, our method captures the amino acid associations and conservations of the aligned patterns. Our algorithm renders a set of APCs in which a set of patterns is discovered, pruned, aligned, and synthesized from the input sequences of a protein family.

Results

Our algorithm identifies the binding or other functional segments and their embedded residues which are important drug targets from the cytochrome c and the ubiquitin protein families taken from Unitprot. The results are independently confirmed by pFam's multiple sequence alignment. For cytochrome c protein the number of resulting patterns with variations are reduced by 76.62% from the number of original patterns without variations. Furthermore, all of the top four candidate APCs correspond to the binding segments with one of each of their conserved amino acid as the binding residue. The discovered proximal APCs agree with pFam and PROSITE results. Surprisingly, the distal binding site discovered by our algorithm is not discovered by pFam nor PROSITE, but confirmed by the three-dimensional cytochrome c structure. When applied to the ubiquitin protein family, our results agree with pFam and reveals six of the seven Lysine binding residues as conserved aligned columns with entropy redundancy measure of 1.0.

Conclusion

The discovery, ranking, reduction, and representation of a set of patterns is important to avert time-consuming and expensive simulations and experimentations during proteomic study and drug discovery.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号