首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   11篇
  国内免费   4篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   11篇
  2014年   11篇
  2013年   14篇
  2012年   21篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   12篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
11.

Background and Aims

microRNAs (miRNAs) are small, endogenous non-coding RNAs that regulate metabolic processes, including obesity. The levels of circulating miRNAs are affected by metabolic changes in obesity, as well as in diet-induced weight loss. Circulating miRNAs are transported by high-density lipoproteins (HDL) but the regulation of HDL-associated miRNAs after diet-induced weight loss has not been studied. We aim to determine if HDL-associated miR-16, miR-17, miR-126, miR-222 and miR-223 levels are altered by diet-induced weight loss in overweight and obese males.

Methods

HDL were isolated from 47 subjects following 12 weeks weight loss comparing a high protein diet (HP, 30% of energy) with a normal protein diet (NP, 20% of energy). HDL-associated miRNAs (miR-16, miR-17, miR-126, miR-222 and miR-223) at baseline and after 12 weeks of weight loss were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. Serum concentrations of human HDL constituents were measured immunoturbidometrically or enzymatically.

Results

miR-16, miR-17, miR-126, miR-222 and miR-223 were present on HDL from overweight and obese subjects at baseline and after 12 weeks of the HP and NP weight loss diets. The HP diet induced a significant decrease in HDL-associated miR-223 levels (p = 0.015), which positively correlated with changes in body weight (r = 0.488, p = 0.032). Changes in miR-223 levels were not associated to changes in HDL composition or size.

Conclusion

HDL-associated miR-223 levels are significantly decreased after HP diet-induced weight loss in overweight and obese males. This is the first study reporting changes in HDL-associated miRNA levels with diet-induced weight loss.  相似文献   
12.
The paper presents multiplex panels of polymorphic microsatellites for two closely related cryptic species Pipistrellus pipistrellus and Pipistrellus pygmaeus. We tested the cross‐species amplification of 34 microsatellite loci, originally developed for five vespertilionid bat species. Ten and nine polymorphic loci in P. pipistrellus (mean number of alleles per locus = 10.5) and P. pygmaeus (8.1), respectively, in three multiplex polymerase chain reactions per species were amplified. All loci can be analysed in a single fragment analysis and can be used as markers to the study of evolution and the ecology of structured populations of socially living bats.  相似文献   
13.
14.
15.
16.

Background  

Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype.  相似文献   
17.
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.  相似文献   
18.
Duong M  Psaltis M  Rader DJ  Marchadier D  Barter PJ  Rye KA 《Biochemistry》2003,42(46):13778-13785
Hepatic lipase (HL) and endothelial lipase (EL) are both members of the triglyceride lipase gene family. HL hydrolyzes phospholipids and triglycerides in triglyceride-rich lipoproteins and high-density lipoproteins (HDL). EL hydrolyzes HDL phospholipids and has low triglyceride lipase activity. The aim of this study was to determine if HL and EL hydrolyze different HDL phospholipids and whether HDL phospholipid composition regulates the interaction of EL and HL with the particle surface. Spherical, reconstituted HDL (rHDL) containing either 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonylphosphatidylcholine (PAPC), or 1-palmitoyl-2-docosahexanoylphosphatidylcholine (PDPC) as the only phospholipid, apolipoprotein A-I as the only apolipoprotein, and either cholesteryl esters (CE) only or mixtures of CE and triolein (TO) in their core were prepared. The rHDL were similar in size and had comparable core lipid/apoA-I molar ratios. The CE-containing rHDL were used to determine the kinetics of HL- and EL-mediated phospholipid hydrolysis. For HL the V(max) of phospholipid hydrolysis for (POPC)rHDL > (PLPC)rHDL approximately (PDPC)rHDL > (PAPC)rHDL, while the K(m)(app) for (POPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (PAPC)rHDL. For EL the V(max) for (PDPC)rHDL > (PAPC)rHDL > (PLPC)rHDL approximately (POPC)rHDL, while the K(m)(app) for (PAPC)rHDL approximately (PLPC)rHDL > (POPC)rHDL > (PDPC)rHDL. The kinetics of EL- and HL-mediated TO hydrolysis was determined using rHDL that contained TO in their core. For HL the V(max) of TO hydrolysis for (PLPC)rHDL > (POPC)rHDL > (PAPC)rHDL > (PDPC)rHDL, while the K(m)(app) for (PLPC)rHDL > (POPC)rHDL approximately (PAPC)rHDL > (PDPC)rHDL. For EL the V(max) and K(m)(app) for (PAPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (POPC)rHDL. These results establish that EL and HL have different substrate specificities for rHDL phospholipids and that their interactions with the rHDL surface are regulated by phospholipids.  相似文献   
19.
Fluorescence resonance energy transfer (FRET) is a sensitive and flexible method for studying protein-protein interactions. Here it is applied to the GroEL-GroES chaperonin system to examine the ATP-driven dynamics that underlie protein folding by this chaperone. Relying on the known structures of GroEL and GroES, sites for attachment of fluorescent probes are designed into the sequence of both proteins. Because these sites are brought close in space when GroEL and GroES form a complex, excitation energy can pass from a donor to an acceptor chromophore by FRET. While in ideal circumstances FRET can be used to measure distances, significant population heterogeneity in the donor-to-acceptor distances in the GroEL-GroES complex makes distance determination difficult. This is due to incomplete labeling of these large, oligomeric proteins and to their rotational symmetry. It is shown, however, that FRET can still be used to follow protein-protein interaction dynamics even in a case such as this, where distance measurements are either not practical or not meaningful. In this way, the FRET signal is used as a simple proximity sensor to score the interaction between GroEL and GroES. Similarly, FRET can also be used to follow interactions between GroEL and a fluorescently labeled substrate polypeptide. Thus, while knowledge of molecular structure aids enormously in the design of FRET experiments, structural information is not necessarily required if the aim is to measure the thermodynamics or kinetics of a protein interaction event by following changes in the binding proximity of two components.  相似文献   
20.
Many techniques have been developed for the assay of polysaccharide lyases; however, none have allowed the measurement of defined and reproducible k(cat) and K(m) values due to the inhomogeneous nature of the polymeric substrates. We have designed three different substrates for chondroitin AC lyase from Flavobacterium heparinum that can be monitored by three different techniques: UV/Vis spectroscopy, fluorescence spectroscopy, and use of a fluoride ion-selective electrode. Each is a continuous assay, free from interferences caused by other components present in crude enzyme preparations, and allows meaningful and reproducible kinetic parameters to be determined. The development of these defined synthetic substrates has opened up a wide variety of mechanistic studies that can be performed to elucidate the detailed catalytic mechanism of this, and other, polysaccharide lyases. The application of these techniques, which include kinetic isotope effects and linear free energy analyses, was not possible with the previous polymeric substrates and will allow this relatively poorly understood class of polysaccharide-degrading enzymes to be studied mechanistically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号