排序方式: 共有34条查询结果,搜索用时 0 毫秒
31.
Stromskaya TP Rybalkina EY Kruglov SS Zabotina TN Mechetner EB Turkina AG Stavrovskaya AA 《Biochemistry. Biokhimii?a》2008,73(1):29-37
Imatinib mesylate (imatinib) is a new generation preparation that is now successfully used for treatment of cancer, particularly for chemotherapy of chronic myeloid leukemia (CML). Imatinib inhibits the activity of chimeric kinase BCR-ABL, which is responsible for the development of CML. The goal of this study was to investigate the role of a multidrug resistance protein, P-glycoprotein (Pgp), in the evolution of CML treated with imatinib. We demonstrate here that although imatinib is a substrate for Pgp, cultured CML cells (strain K562/i-S9), overexpressing active Pgp, do not exhibit imatinib resistance. Studies of CML patients in the accelerated phase have shown variations in the number of Pgp-positive cells (Pgp+) among individual patients treated with imatinib. During treatment of patients with imatinib for 6-12 months, the number of Pgp-positive cells significantly increased in most patients. The high number of Pgp+ cells remained in patients at least for 4.5 years and correlated with active Rhodamine 123 (Rh123) efflux. Such correlation was not found in the group of imatinib-resistant patients examined 35-60 months after onset of imatinib therapy: cells from the imatinib-resistant patients exhibited efficient Rh123 efflux irrespectively of Pgp expression. We also compared the mode of Rh123 efflux by cells from CML patients who underwent imatinib treatment for 6-24 months and the responsiveness of patients to this therapy. There were significant differences in survival of patients depending on the absence or the presence of Rh123 efflux. In addition to Pgp, patients' cells expressed other transport proteins of the ABC family. Our data suggest that treatment with imatinib causes selection of leukemic stem cells characterized by expression of Pgp and other ABC transporters. 相似文献
32.
Sherbakova EA Stromskaia TP Rybalkina EIu Kalita OV Stavrovskaia AA 《Molekuliarnaia biologiia》2008,42(3):487-493
In a past decade became evident that phosphatidylinositol-3-kinase controlled signal transduction cascade (PI3K/Akt/PTEN/mTOR) is implicated in resistance of tumor cells to anticancer drugs. Another well studied mechanism of multidrug resistance is associated with the activity of drug transporters of ABC superfamily (first of all P-glycoprotein (Pgp), MRP1, BCRP). Several mechanisms of cell defense can be turned on in one cell. The interconnections between different mechanisms involved in drug resistance are poorly studied. In the present study we used PC3 and DU145 human prostate cell lines to show that PTEN functional status determines level of cell resistance to some drugs, it correlates with expression level of MRP1 and BCRP proteins. We showed that Pgp is not involved in development of drug resistance in these cells. Transfection of PTEN into PTEN-deficient PC3 as well as rapamycin treatment caused the inhibition of PI3K/Akt/mTOR signaling and resulted in cell sensitization to the action of doxorubicin and vinblastine. We showed that PTEN transfection leads to the change in expression of MRP1 and BCRP. Our results show that in prostate cancer cells at least two mechanisms of drug resistance are interconnected. PTEN and mTOR signaling were shown: to be involved into regulation of MRP1 and BCRP. 相似文献
33.
E. A. Shcherbakova T. P. Stromskaya E. Yu. Rybalkina A. A. Stavrovskaya 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2007,1(2):123-129
The influence of the human tumor suppressor PTEN on sensitivity of tumor cells to cytostatic drugs was studied. Rat ras-transformed (N-ras Asp12 ) fibroblasts were stably transfected with a full-size PTEN gene. Transfected clone was characterized by an enhanced expression of PTEN and a more normal phenotype in comparison with the parental cells. The effect of transient transfection with PTEN on the sensitivity of several malignant cell lines to the cytostatic drugs colchicine and adriablastine was studied. These drugs differ from each other in action mechanisms and intracellular targets. The tumor cell lines tested in this study included parental cell lines and stable sublines possessing drug resistance due to overexpression of P-glycoprotein. In all cell lines, introduction of exogenous PTEN caused a decrease in proliferation rates. This indicated that transgene was active. The chemosensitivity of some drug-resistant sublines was changed after PTEN transfection, but the drug sensitivity of parental cell lines remained unaffected. The effect of PTEN overexpression on chemosensitivity of malignant cells to cytostatic drugs was found to depend both on their mechanisms of action and on the origin of transfected cells. Our data suggest that PTEN is involved into the molecular mechanisms of drug resistance in cells studied. 相似文献
34.
A R Re?zis A K Drondina A A Asratian S G Mardanly T N Rybalkina 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1988,(11):27-30
Serological examinations of 1,200 children, hospitalized at the viral hepatitis department over a year, for the presence of hepatitis A (HA) and hepatitis B (HB) markers have revealed a 7% incidence rate of mixed HA and HB infections. Three variants of mixed infection have been established (true mixed infection, HA combined with asymptomatic HBsAg carriership, cross superinfection) and the relative significance of each of them has been determined. Mixed infection took an unfavorable course with a tendency to the prolongation of the pathological process eventuating in chronic hepatitis, especially in cases of true mixed infections (15.9%). 相似文献