首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8277篇
  免费   789篇
  9066篇
  2023年   56篇
  2022年   134篇
  2021年   251篇
  2020年   153篇
  2019年   188篇
  2018年   217篇
  2017年   168篇
  2016年   277篇
  2015年   432篇
  2014年   514篇
  2013年   498篇
  2012年   714篇
  2011年   678篇
  2010年   418篇
  2009年   325篇
  2008年   467篇
  2007年   432篇
  2006年   405篇
  2005年   308篇
  2004年   296篇
  2003年   260篇
  2002年   219篇
  2001年   122篇
  2000年   109篇
  1999年   93篇
  1998年   58篇
  1997年   42篇
  1996年   29篇
  1995年   31篇
  1994年   39篇
  1993年   39篇
  1992年   61篇
  1991年   50篇
  1990年   51篇
  1989年   65篇
  1988年   35篇
  1987年   62篇
  1986年   55篇
  1985年   63篇
  1984年   48篇
  1983年   51篇
  1982年   37篇
  1981年   30篇
  1980年   44篇
  1979年   58篇
  1976年   32篇
  1975年   34篇
  1974年   45篇
  1973年   32篇
  1972年   30篇
排序方式: 共有9066条查询结果,搜索用时 15 毫秒
131.
Mutation position imaging toolbox (MuPIT) interactive is a browser-based application for single-nucleotide variants (SNVs), which automatically maps the genomic coordinates of SNVs onto the coordinates of available three-dimensional (3D) protein structures. The application is designed for interactive browser-based visualization of the putative functional relevance of SNVs by biologists who are not necessarily experts either in bioinformatics or protein structure. Users may submit batches of several thousand SNVs and review all protein structures that cover the SNVs, including available functional annotations such as binding sites, mutagenesis experiments, and common polymorphisms. Multiple SNVs may be mapped onto each structure, enabling 3D visualization of SNV clusters and their relationship to functionally annotated positions. We illustrate the utility of MuPIT interactive in rationalizing the impact of selected polymorphisms in the PharmGKB database, somatic mutations identified in the Cancer Genome Atlas study of invasive breast carcinomas, and rare variants identified in the exome sequencing project. MuPIT interactive is freely available for non-profit use at http://mupit.icm.jhu.edu.  相似文献   
132.
133.
Abstract

Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.  相似文献   
134.
Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9±8.2 yrs (mean±SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6±6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0±7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p?<?.028) and B (p?<?0.004). Experiment 2 showed significant phase advances in conditions A (p?<?0.018) and B (p?<?0.003) but not C (p?<?0.23), relative to condition D. In Experiment 3, only condition B (p?<?0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start of light treatment for all three experiments. The best fit curve applied to these data (R2?=?0.94) provided a partial phase-response curve with maximum advance at approximately 9–11 h and maximum delay at approximately 5–6 h following DLMO. These data suggest largest phase advances will result when light treatment is started between 06:00 and 08:00 h, and greatest phase delays will result from light treatment started between 02:00 to 03:00 h in entrained subjects with a regular sleep wake cycle (23:00 to 07:00 h).  相似文献   
135.
An electrogenic biofilm was developed on a macroporous chitosan-carbon nanotube (CHIT-CNT) electrode under constant poised potential (?0.25 V versus Ag/AgCl reference electrode) and flow through conditions utilizing the effluent of an anaerobic digester as both the inoculant and substrate for the electrogenic biofilm. After 125 days of inoculation the bioelectrode demonstrated an open circuit potential of ?0.62 V and a current density of 9.43 μA cm?3 (at ?0.25 V). Scanning electron microscopy images indicate thorough surface coverage of the biofilm with a high density of bacterial nanowires physically connecting bacteria to bacteria and bacteria to carbon nanotube (electrode surface) suggesting the nanowires are electrically conductive. DGGE was used to identify the major bacterial and archaeal populations.  相似文献   
136.
137.
The miniaturized wireless inertial measurement unit (IMU) technology and algorithms presented herein promote rapid and accurate predictions of the center-of-rotation (CoR) for ball/spherical joints. The algorithm improves upon existing IMU-based methods by directly utilizing the measured acceleration and angular velocity provided by the IMU to deduce the CoR in lieu of relying on error-prone velocity and position estimates. Results demonstrate that this new method resolves the position of the CoR to within a 3 mm sphere of the true CoR determined by a precision coordinate measuring machine. Such accuracy may render this method attractive for broad use in field, laboratory and clinical settings requiring non-invasive and rapid estimates of joint CoR.  相似文献   
138.
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.  相似文献   
139.
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8 h following a single treatment. This was accompanied by increased expression of IκBα mRNA and protein. The temporal increase in IκB protein expression paralleled the suppression of NFκB activity, suggesting that IκBα mediates the suppression NFκB activity observed. These actions of clenbuterol were prevented by pre-treatment with the non-selective β-adrenoceptor antagonist propranolol, the β2-adrenoceptor antagonist ICI-118,551, but not the β1-adrenoceptor antagonist metoprolol, suggesting that the effects of clenbuterol on IκBα expression and NFκB activity are mediated specifically by the β2-adrenoceptor. In addition, the actions of clenbuterol were mimicked by systemic administration of another highly selective long-acting β2-adrenoceptor agonist formoterol. As neurodegenerative diseases are associated with inflammation we determined if clenbuterol could suppress NFκB activation that occurs in response to an inflammatory stimulus. In this regard we demonstrate that clenbuterol inhibited IκB phosphorylation and IκB degradation and inhibited NFκB activity in hippocampus and cortex of rats following a central injection of the inflammagen bacterial lipopolysaccharide (LPS). In tandem, clenbuterol blocked expression of the NFκB-inducible genes TNF-α and ICAM-1 following LPS administration. Our finding that clenbuterol and formoterol inhibit NFκB activity in the CNS further supports the idea that β2-adrenoceptors may be an attractive target for treating neuroinflammation and combating inflammation-related neurodegeneration.  相似文献   
140.
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα‐induced E‐selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL‐1β‐induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre‐exposed to 12 h of laminar shear (shear‐conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα‐induced relative to IL‐1β‐induced HUVEC expression of E‐selectin. Specifically, E‐selectin surface expression by naïve HUVECs is enhanced in the 8–12 h activation time range with simultaneous exposure to shear and TNFα (shear‐TNFα) relative to TNFα static control whereas enhanced E‐selectin expression is observed in the 4–24 h range for shear‐IL‐1β treatment relative to IL‐1β static control. While exposure of HUVECs to shear preconditioning mutes shear‐TNFα‐induced E‐selectin expression, it enhances or down‐regulates shear‐IL‐1β‐induced expression dependent on the activation period. Under dual‐cytokine‐shear conditions, IL‐1β signaling dominates. Overall, a better understanding of E‐selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies. Biotechnol. Bioeng. 2013; 110: 999–1003. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号