首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8142篇
  免费   782篇
  8924篇
  2023年   55篇
  2022年   131篇
  2021年   249篇
  2020年   149篇
  2019年   187篇
  2018年   216篇
  2017年   165篇
  2016年   272篇
  2015年   427篇
  2014年   512篇
  2013年   493篇
  2012年   702篇
  2011年   671篇
  2010年   413篇
  2009年   320篇
  2008年   462篇
  2007年   425篇
  2006年   397篇
  2005年   304篇
  2004年   291篇
  2003年   256篇
  2002年   217篇
  2001年   120篇
  2000年   108篇
  1999年   93篇
  1998年   57篇
  1997年   42篇
  1996年   29篇
  1995年   31篇
  1994年   39篇
  1993年   39篇
  1992年   61篇
  1991年   49篇
  1990年   50篇
  1989年   65篇
  1988年   36篇
  1987年   59篇
  1986年   55篇
  1985年   65篇
  1984年   46篇
  1983年   49篇
  1982年   37篇
  1981年   30篇
  1980年   43篇
  1979年   58篇
  1977年   26篇
  1976年   31篇
  1975年   33篇
  1974年   40篇
  1972年   26篇
排序方式: 共有8924条查询结果,搜索用时 15 毫秒
111.
An NAD+-dependent l-arabinitol 4-dehydrogenase (LAD, EC 1.1.1.12) from Neurospora crassa was cloned and expressed in Escherichia coli and purified to homogeneity. The enzyme was a homotetramer and contained two Zn2+ ions per subunit, displaying similar characteristics to medium-chain sorbitol dehydrogenases (SDHs). High enzymatic activity was observed for substrates l-arabinitol, adonitol, and xylitol and no activity for d-mannitol, d-arabinitol, or d-sorbitol. The enzyme showed strong preference for NAD+ but also displayed a very low yet detectable activity with NADP+. Mutational analysis of residue F59, the single different substrate-binding residue between LADs and d-SDHs, failed to confer the enzyme the ability to accept d-sorbitol as a substrate, suggesting that the amino acids flanking the active site cleft may be responsible for the different activity and affinity patterns between LADs and SDHs. This enzyme should be useful for in vivo and in vitro production of xylitol and ethanol from l-arabinose. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
112.
Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.  相似文献   
113.
114.
Increases in reactive oxygen species and mis-regulation of calcium homeostasis are associated with various physiological conditions and disease states including aging, ischemia, exposure to drugs of abuse, and neurodegenerative diseases. In aged animals, this is accompanied by a reduction in oxidative repair mechanisms resulting in increased methionine oxidation of the calcium signaling protein calmodulin in the brain. Here, we show that oxidation of calmodulin results in an inability to: (1) activate CaMKII; (2) support Thr(286) autophosphorylation of CaMKII; (3) prevent Thr(305/6) autophosphorylation of CaMKII; (4) support binding of CaMKII to the NR2B subunit of the NMDA receptor; and (5) compete with alpha-actinin for binding to CaMKII. Moreover, oxidized calmodulin does not efficiently bind calcium/calmodulin-dependent protein kinase II (CaMKII) in rat brain lysates or in vitro. These observations contrast from past experiments performed with oxidized calmodulin and the plasma membrane calcium ATPase, where oxidized calmodulin binds to, and partially activates the PMCA. When taken together, these data suggest that oxidative stress may perturb neuronal and cardiac function via a decreased ability of oxidized calmodulin to bind, activate, and regulate the interactions of CaMKII.  相似文献   
115.
A set of proteins and noncoding RNAs,referred to as the male specific lethal (MSL) complex,is present on the male X chromosome in Drosophila and has been postulated to be responsible for dosage compensation of this chromosome - the up-regulation of its expression to be equal to that of two X chromosomes in females.This hypothesis is evaluated in view of lesser known aspects of dosage compensation such as the fact that metafemales with three X chromosomes also have equal expression to normal females,which would require a down-regulation of each gene copy.Moreover,when this complex is ectopically expressed in females or specifically targeted to a reporter in males,there is no increase in expression of the genes or targets with which it is associated.These observations are not consistent with the hypothesis that the MSL complex conditions dosage compensation.A synthesis is described that can account for these observations.  相似文献   
116.
Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.  相似文献   
117.
Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F‐statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.  相似文献   
118.
Nottingham RM  Pfeffer SR 《Cell》2008,133(7):1141-1143
TRAPPI is a multisubunit protein complex on the Golgi that activates the small GTPase Ypt1p to facilitate the receipt of transport vesicles inbound from the endoplasmic reticulum. Cai et al. (2008) now present structural and biochemical analyses of yeast TRAPPI in a complex with Ypt1p revealing a unique mechanism by which TRAPPI catalyzes guanine nucleotide exchange.  相似文献   
119.
120.
The blood–brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14‐cis‐eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n ? 6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell® inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2), an eicosanoid known to facilitate opening of the blood–brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein‐labeled dextran from apical to basolateral medium. ARA‐mediated permeability was attenuated by specific cyclooxygenase‐2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA‐mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号