全文获取类型
收费全文 | 8166篇 |
免费 | 786篇 |
专业分类
8952篇 |
出版年
2023年 | 55篇 |
2022年 | 131篇 |
2021年 | 256篇 |
2020年 | 152篇 |
2019年 | 190篇 |
2018年 | 219篇 |
2017年 | 168篇 |
2016年 | 273篇 |
2015年 | 430篇 |
2014年 | 512篇 |
2013年 | 496篇 |
2012年 | 705篇 |
2011年 | 672篇 |
2010年 | 415篇 |
2009年 | 321篇 |
2008年 | 462篇 |
2007年 | 425篇 |
2006年 | 397篇 |
2005年 | 304篇 |
2004年 | 291篇 |
2003年 | 256篇 |
2002年 | 217篇 |
2001年 | 120篇 |
2000年 | 108篇 |
1999年 | 93篇 |
1998年 | 57篇 |
1997年 | 42篇 |
1996年 | 29篇 |
1995年 | 31篇 |
1994年 | 39篇 |
1993年 | 39篇 |
1992年 | 61篇 |
1991年 | 49篇 |
1990年 | 50篇 |
1989年 | 65篇 |
1988年 | 36篇 |
1987年 | 59篇 |
1986年 | 54篇 |
1985年 | 61篇 |
1984年 | 46篇 |
1983年 | 49篇 |
1982年 | 37篇 |
1981年 | 30篇 |
1980年 | 43篇 |
1979年 | 58篇 |
1977年 | 26篇 |
1976年 | 31篇 |
1975年 | 33篇 |
1974年 | 40篇 |
1972年 | 26篇 |
排序方式: 共有8952条查询结果,搜索用时 17 毫秒
181.
Differential accumulation of proteinase inhibitor I in normal and crown gall tissue of tobacco, tomato, and potato 下载免费PDF全文
A proteinase inhibitor (inhibitor I) is induced in crown gall tumors of tobacco (Nicotiana tabacum) initiated through infection with the tumorinducing bacterium, Agrobacterium tumefaciens, strains B6 or CG-14. Uninfected tissues do not contain immunologically detectable quantities of inhibitor I. Inhibitor I synthesis in tobacco crown gall tumors paralleled tumor growth at the average rate of about 4.5 μg of inhibitor I per 200 mg of fresh tissue per day. Infection of variegated tobacco mutant Dp-I with A. tumefaciens strain CG-14 produced tumors with 25% more inhibitor than tumors induced with strain B6. Unlike tobacco, tumors induced by either bacterial strain on potato (Solanum tuberosum) and on tomato (Lycopersicum esculentum) did not accumulate inhibitor I. Consequently, inhibitor I accumulation is modulated by the type of plant host used in spite of familial relatedness (Solanaceae) and the strain of A. tumefaciens used for infection. 相似文献
182.
183.
Mullins DW Martins RS Elgert KD 《Experimental biology and medicine (Maywood, N.J.)》2003,228(3):270-277
Tumors can evade immune responses through suppressor signals that dysregulate host effector cell function. In this study we demonstrate that tumor-derived suppressor molecules impede host antitumor immune activity through dysregulation of multiple macrophage (Mphi) pathways, including suppressed production of cytotoxic and immunostimulatory agents and impaired expression of the interferon regulatory factor-8 (IRF-8) protein, a critical transducer of interferon-gamma-mediated activation pathways. The tumor-derived immunosuppressive cytokines interleukin-10 and transforming growth factor-beta(1) constrain IRF-8 production by normal Mphis, regardless of priming, and IRF-8 is also dysregulated in primary Mphis from tumor-burdened hosts. Collectively, these data describe a new mechanism by which tumors disrupt immune function and suggest that abrogation of tumor-derived immunoregulatory factors in situ can restore immune function and enhance antitumor efficacy. 相似文献
184.
Andrey V. Kajava Naiqian Cheng Ryan Cleaver Martin Kessel Martha N. Simon Eve Willery Francoise Jacob-Dubuisson Camille Locht Alasdair C. Steven 《Molecular microbiology》2001,42(2):279-292
Bordetella pertussis establishes infection by attaching to epithelial cells of the respiratory tract. One of its adhesins is filamentous haemagglutinin (FHA), a 500-A-long secreted protein that is rich in beta-structure and contains two regions, R1 and R2, of tandem 19-residue repeats. Two models have been proposed in which the central shaft is (i) a hairpin made up of a pairing of two long antiparallel beta-sheets; or (ii) a beta-helix in which the polypeptide chain is coiled to form three long parallel beta-sheets. We have analysed a truncated variant of FHA by electron microscopy (negative staining, shadowing and scanning transmission electron microscopy of unstained specimens): these observations support the latter model. Further support comes from detailed sequence analysis and molecular modelling studies. We applied a profile search method to the sequences adjacent to and between R1 and R2 and found additional "covert" copies of the same motifs that may be recognized in overt form in the R1 and R2 sequence repeats. Their total number is sufficient to support the tenet of the beta-helix model that the shaft domain--a 350 A rod--should consist of a continuous run of these motifs, apart from loop inserts. The N-terminus, which does not contain such repeats, was found to be weakly homologous to cyclodextrin transferase, a protein of known immunoglobulin-like structure. Drawing on crystal structures of known beta-helical proteins, we developed structural models of the coil motifs putatively formed by the R1 and R2 repeats. Finally, we applied the same profile search method to the sequence database and found several other proteins--all large secreted proteins of bacterial provenance--that have similar repeats and probably also similar structures. 相似文献
185.
Braulio A. Assis Julian D. Avery Catherine Tylan Heather I. Engler Ryan L. Earley Tracy Langkilde 《Ecology and evolution》2021,11(12):7647
Sex differences in animal coloration often result from sex‐dependent regulatory mechanisms. Still, some species exhibit incomplete sexual dimorphism as females carry a rudimentary version of a costly male trait, leading to intralocus sexual conflict. The underlying physiology and condition dependence of these traits can inform why such conflicts remain unresolved. In eastern fence lizards (Sceloporus undulatus), blue iridophore badges are found in males and females, but melanin pigmentation underneath and surrounding badges is male‐exclusive. We track color saturation and area of badges across sexual maturity, and their relationship to individual quality (body condition and immunocompetence) and relevant hormones (testosterone and corticosterone). Saturation and testosterone were positively correlated in both sexes, but hormone and trait had little overlap between males and females. Saturation was correlated with body condition and immunocompetence in males but not in females. Co‐regulation by androgens may have released females from resource allocation costs of color saturation, even when in high condition. Badge area was independent of testosterone, but associated with low corticosterone in females, indicating that a nonsex hormone underlies incomplete sexual dimorphism. Given the evidence in this species for female reproductive costs associated with ornamentation, this sex‐nonspecific regulation of an honest signal may underlie intralocus sexual conflict. 相似文献
186.
Daria A. Gaykalova Rajita Vatapalli Yingying Wei Hua-Ling Tsai Hao Wang Chi Zhang Patrick T. Hennessey Theresa Guo Marietta Tan Ryan Li Julie Ahn Zubair Khan William H. Westra Justin A. Bishop David Zaboli Wayne M. Koch Tanbir Khan Michael F. Ochs Joseph A. Califano 《PloS one》2015,10(11)
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC. 相似文献
187.
Ryan C. Hill Matthew J. Wither Travis Nemkov Alexander Barrett Angelo D'Alessandro Monika Dzieciatkowska Kirk C. Hansen 《Molecular & cellular proteomics : MCP》2015,14(7):1946-1958
Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.During the last decade, paleontology and taphonomy (the study of decaying organisms over time and the fossilization processes) have begun to overlap with the field of proteomics to shed new light on preserved organic matter in fossilized bones (1–4). These bones represent a time capsule of ancient biomolecules, owing to their natural resistance to post mortem decay arising from a unique combination of mechanical, structural, and chemical properties (4–7).Although bones can be cursorily described as a composite of collagen (protein) and hydroxyapatite (mineral), fossilized bones undergo three distinct diagenesis pathways: (i) chemical deterioration of the organic phase; (ii) chemical deterioration of the mineral phase; and (iii) (micro)biological attack of the composite (6). In addition, the rate of these degradation pathways are affected by temperature, as higher burial temperatures have been shown to accelerate these processes (6, 8). Though relatively unusual, the first of these three pathways results in a slower deterioration process, which is more generally mitigated under (6) specific environmental constraints, such as geochemical stability (stable temperature and acidity) that promote bone mineral preservation. Importantly, slower deterioration results in more preserved biological materials that are more amenable to downstream analytical assays. One example of this is the controversial case of bone and soft-tissue preservation from the Cretaceous/Tertiary boundary (9–22). In light of these and other studies of ancient biomolecules, paleontological models have proposed that organic biomolecules in ancient samples, such as collagen sequences from the 80 million-year-(my)-old Campanian hadrosaur, Brachylophosaurus canadensis (16) or 68-my-old Tyrannosaurus rex, might be protected by the microenvironment within bones. Such spaces are believed to form a protective shelter that is able to reduce the effects of diagenetic events. In addition to collagen, preserved biomolecules include blood proteins, cellular lipids, and DNA (4, 5). While the maximum estimated lifespan of DNA in bones is ∼20,000 years (ky) at 10 °C, bone proteins have an even longer lifespan, making them an exceptional target for analysis to gain relevant insights into fossilized samples (6). Indeed, the survival of collagen, which is considered to be the most abundant bone protein, is estimated to be in the range 340 ky at 20 °C. Similarly, osteocalcin, the second-most abundant bone protein, can persist for ≈45 ky at 20 °C, thus opening an unprecedented analytical window to study extremely old samples (2, 4, 23).Although ancient DNA amplification and sequencing can yield interesting clues and potential artifacts from contaminating agents (7, 24–28), the improved preservation of ancient proteins provides access to a reservoir of otherwise unavailable genetic information for phylogenetic inference (25, 29, 30). In particular, mass spectrometry (MS)-based screening of species-specific collagen peptides has recently been used as a low-cost, rapid alternative to DNA sequencing for taxonomic attribution of morphologically unidentifiable small bone fragments and teeth stemming from diverse archeological contexts (25, 31–33).For over five decades, researchers have presented biochemical evidence for the existence of preserved protein material from ancient bone samples (34–36). One of the first direct measurements was by amino acid analysis, which showed that the compositional profile of ancient samples was consistent with collagens in modern bone samples (37–39). Preservation of organic biomolecules, either from bone, dentin, antlers, or ivory, has been investigated by radiolabeled 14C fossil dating (40) to provide an avenue of delineating evolutionary divergence from extant species (3, 41, 42). It is also important to note that these parameters primarily depend on ancient bone collagen as the levels remain largely unchanged (a high percentage of collagen is retained, as gleaned by laboratory experiments on bone taphonomy (6)). Additionally, antibody-based immunostaining methods have given indirect evidence of intact peptide amide bonds (43–45) to aid some of the first evidence of protein other than collagen and osteocalcin in ancient mammoth (43) and human specimens (46).In the past, mass spectrometry has been used to obtain MS signals consistent with modern osteocalcin samples (2, 47), and eventually postsource decay peptide fragmentation was used to confirm the identification of osteocalcin in fossil hominids dating back ∼75 ky (48). More recently, modern “bottom-up” proteomic methods were applied to mastodon and T. rex samples (10), complementing immunohistochemistry evidence (13, 17). The results hinted at the potential of identifying peptides from proteolytic digest of well-preserved bone samples. This work also highlighted the importance of minimizing sources of protein contamination and adhering to data publication guidelines (20, 21). In the past few years, a very well-preserved juvenile mammoth referred to as Lyuba was discovered in the Siberian permafrost and analyzed using high-resolution tandem mass spectrometry (29). This study was followed with a report by Wadsworth and Buckley (30) describing the analysis of proteins from 19 bovine bone samples spanning 4 ky to 1.5 my. Both of these groups reported the identification of additional collagen and noncollagen proteins.Recently, a series of large extinct mammal bones were unearthed at a reservoir near Snowmass Village, Colorado, USA (49, 50). The finding was made during a construction project at the Ziegler Reservoir, a fossil site that was originally a lake formed at an elevation of ∼2,705 m during the Bull Lake glaciations ∼140 ky ago (49, 51). The original lake area was ∼5 hectares in size with a total catchment of ∼14 hectares and lacked a direct water flow inlet or outlet. This closed drainage basin established a relatively unique environment that resulted in the exceptional preservation of plant material, insects (52), and vertebrate bones (49). In particular, a cranial specimen from extinct Bison latifrons was unearthed from the Biostratigraphic Zone/Marine Oxygen Isotope Stage (MIS) 5d, which dates back to ∼120 ky (53, 54).Here, we describe the use of paleoproteomics, for the identification of protein remnants with a focus on a particularly unique B. latifrons cranial specimen found at the Ziegler site. We developed a simplified sample processing approach that allows for analysis of low milligram quantities of ancient samples for peptide identification. Our method avoids the extensive demineralization steps of traditional protocols and utilizes an acid labile detergent to allow for efficient extraction and digestion without the need for additional sample cleanup steps. This approach was applied to a specimen from B. latifrons that displayed visual and mechanical properties consistent with the meninges, a fibrous tissue that lines the cranial cavity. Bioinformatics analysis revealed the presence of a recurring glycosylation signature in well-preserved collagens. In particular, the presence of glycosylated hydroxylysine residues was identified as a unique feature of bone fossil collagen, as gleaned through meta-analyses of raw data from previous reports on woolly mammoth (Mammuthus primigenius) and bovine samples (29, 30). The results from these meta-analyses indicate a common, unique feature of collagen that coincides with, and possibly contributes to its preservation. 相似文献
188.
Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.) 总被引:10,自引:1,他引:10
G. Keerthisinghe P. J. Hocking P. R. Ryan & E. Delhaize 《Plant, cell & environment》1998,21(5):467-478
We investigated (1) the effect of constant and altered inorganic phosphate (Pi ) supply (1–100 mmol m–3 ) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi , the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32 Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux. 相似文献
189.
Mesocosm experiments were conducted in the summer of 1996 to quantify the effect of bioturbation by Carcinus maenas (the introduced European green crab) on survival of transplanted Zostera marina (eelgrass). The research grew out of a successful 2.52 ha eelgrass transplant project in the Great Bay Estuary of New Hampshire. At several subtidal sites, green crabs were found to damage transplanted eelgrass by cutting the shoots to the extent that some sites demonstrated poor survival. In three separate experiments, eight replicate mesocosm tanks were transplanted with 36 shoots of eelgrass, and different crab densities were introduced into the tanks. The number of shoots damaged by crabs was significantly higher in tanks with moderate (4.0 crabs/m2 ), high (7.0 crabs/m2 ), or very high (15.0 crabs/m2 ) crab densities than in tanks with low (1.0 crabs/m2 ) crab densities. Up to 39% of viable shoots were lost within one week of exposure to green crab activities. The mesocosm results demonstrated that green crabs were not directly attracted to eelgrass but that they significantly decreased transplant survival through their activity. Field densities of green crabs were found to exceed the density at which most damage occurred in the experiments, suggesting that this introduced species can be a major determinant of eelgrass transplant survival. The results underscore the major influence that biological components of transplant sites can have on transplant survival, and the need for their consideration in the site selection process. 相似文献
190.
Harsh Raman Kerong Zhang Mehmet Cakir Rudi Appels David F Garvin Lyza G Maron Leon V Kochian J Sergio Moroni Rosy Raman Muhammad Imtiaz Fiona Drake-Brockman Irene Waters Peter Martin Takayuki Sasaki Yoko Yamamoto Hideaki Matsumoto Diane M Hebb Emmanuel Delhaize Peter R Ryan 《Génome》2005,48(5):781-791
The major aluminum (Al) tolerance gene in wheat ALMT1 confers. An Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1. 相似文献