首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   9篇
  2021年   1篇
  2018年   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有61条查询结果,搜索用时 109 毫秒
51.
This study is a geographically systematic genetic survey of the easternmost subspecies of chimpanzee, Pan troglodytes schweinfurthii. DNA was noninvasively collected in the form of shed hair from chimpanzees of known origin in Uganda, Rwanda, Tanzania, and Zaire. Two hundred sixty-two DNA sequences from hypervariable region 1 of which of the mitochondrial control region were generated. Eastern chimpanzees display levels of mitochondrial genetic variation which are low and which are similar to levels observed in humans (Homo sapiens). Also like humans, between 80% and 90% of the genetic variability within the eastern chimpanzees is apportioned within populations. Spatial autocorrelation analysis shows that genetic similarity between eastern chimpanzees decreases clinically with distance, in a pattern remarkably similar to one seen for humans separated by equivalent geographic distances. Eastern chimpanzee mismatch distributions (frequency distributions of pairwise genetic differences between individuals) are similar in shape to those for humans, implying similar population histories of recent demographic expansion. The overall pattern of genetic variability in eastern chimpanzees is consistent with the hypothesis that the subject has responded demographically to paleoclimatically driven changes in the distribution of eastern African forests during the recent Pleistocene.   相似文献   
52.
We have analyzed the sequence of the Tc2 transposon of the nematode Caenorhabditis elegans. The Tc2 element is 2,074 bp in length and has perfect inverted terminal repeats of 24 bp. The structure of this element suggests that it may have the capacity to code for a transposase protein and/or for regulatory functions. Three large reading frames on one strand exhibit nonrandom codon usage and may represent exons. The first open coding region is preceded by a potential CAAT box, TATA box, and consensus heat shock sequence. In addition to its inverted terminal repeats, Tc2 has an unusual structural feature: subterminal degenerate direct repeats that are arranged in an irregular overlapping pattern. We have also examined the insertion sites of two Tc2 elements previously identified as the cause of restriction fragment length polymorphisms. Both insertions generated a target site duplication of 2 bp. One element had inserted inside the inverted terminal repeat of another transposon, splitting it into two unequal parts.  相似文献   
53.
In order to test hypotheses about the phylogenetic relationships among living genera of New World monkeys, 1.3 kb of DNA sequence information was collected for two introns of the glucose-6-phosphate dehydrogenase (G6PD) locus, encoded on the X chromosome, for 24 species of New World monkeys. These data were analyzed using a maximum parsimony algorithm. The strict consensus of the three most-parsimonious gene trees that result shows support for the following clades: a pitheciine clade including Callicebus within which Chiropotes and Cacajao are sister taxa, an Alouatta-atelin clade within which Brachyteles is the sister taxon of Lagothrix and which is sister to another clade containing the callitrichines, and a callitrichine/Aotus/Cebus/Saimiri clade. Within the callitrichines, Callimico is the sister taxon of Callithrix. Cebus and Saimiri form a clade. These results are broadly consistent with previously published DNA sequence analyses of platyrrhine phylogeny and provide additional support for groupings provisionally proposed in those earlier studies. Nevertheless, questions remain as to the relative phylogenetic placement of Leontopithecus and Saguinus, the branching order within the Aotus/Cebus/Saimiri/callitrichine clade, and the placement of the pitheciine clade relative to the atelines and the callitrichines.  相似文献   
54.
In this study, the molecular population genetics of the orangutans -2 globin (HBA2) gene were investigated in order to test for the action of natural selection. Haplotypes from 28 orangutan chromosomes were collected from a 1.46-kilobase region of the -2 globin locus. While many aspects of the data were consistent with neutrality, the observed heterogeneous distribution of polymorphisms was inconsistent with neutral expectations. Furthermore, a single amino acid variant, found in both the Bornean and the Sumatran orangutan subspecies, was associated with different alternative synonymous variants in each subspecies, suggesting that the allele may have spread separately through the two subspecies after two distinct origination events. This variant is not in Hardy–Weinberg equilibrium (HWE). These observations are consistent with neutral models that incorporate population structure and models that invoke selection. The orangutan Plasmodium parasite is a plausible selective agent that may underlie the variation at -2 globin in orangutans.This article contains electronic supplementary material.[Reviewing Editor: Dr. Deborah Charlesworth]Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers AY372078–AY372110.  相似文献   
55.
56.
Novel role for JNK as a stress-activated Bcl2 kinase   总被引:16,自引:0,他引:16  
Interleukin (IL)-3-induced Bcl2 phosphorylation at Ser(70) may be required for its full and potent antiapoptotic activity. However, in the absence of IL-3, increased expression of Bcl2 can also prolong cell survival. To determine how Bcl2 may be functionally phosphorylated following IL-3 withdrawal, a stress-activated Bcl2 kinase (SAK) was sought. Results indicate that anisomycin, a potent activator of the stress kinase JNK/SAPK, can induce Bcl2 phosphorylation at Ser(70) and that JNK1 can be latently activated following IL-3 withdrawal to mediate Bcl2 phosphorylation. JNK1 directly phosphorylates Bcl2 in vitro, co-localizes with Bcl2, and collaborates with Bcl-2 to mediate prolonged cell survival in the absence of IL-3 or following various stress applications. Dominant-negative (DN)-JNK1 can block both anisomycin and latent IL-3 withdrawal-induced Bcl2 phosphorylation (>90%) and potently enhances cell death. Furthermore, low dose okadaic acid (OA), a potent protein phosphatase 1 and 2A inhibitor, can activate the mitogen-activated protein kinases JNK1 and ERK1/2, but not p38 kinase, to induce Bcl2 phosphorylation and prolong cell survival in factor-deprived cells. Since PD98059, a specific MEK inhibitor, can only partially inhibit OA-induced Bcl2 phosphorylation but completely blocks OA-induced Bcl2 phosphorylation in cells expressing DN-JNK1, this supports the conclusion that OA may stimulate Bcl2 phosphorylation via a mechanism involving both JNK1 and ERK1/2. Collectively, these findings indicate a novel role for JNK1 as a SAK and may explain, at least in part, how functional phosphorylation of Bc12 can occur in the absence of growth factor.  相似文献   
57.
The sphingolipid ceramide is an important second signal molecule and potent apoptotic agent. The production of ceramide is associated with virtually every known stress stimulus, and thus, generation of this sphingolipid has been suggested as a universal feature of apoptosis. Recent studies suggest that an important component of cell death following diverse stress stimuli (e.g. interleukin-3 withdrawal, sodium arsenite treatment, and peroxide treatment) is the activation of the double-stranded RNA-activable protein kinase, PKR, resulting in the inhibition of protein synthesis (Ito, T., Jagus, R., and May, W. S. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 7455-7459). The recently discovered cellular PKR activator, RAX, is phosphorylated in association with PKR activation (Ito, T., Yang, M., and May, W. S. (1999) J. Biol. Chem. 274, 15427-15432). Since RAX is phosphorylated by an as yet undetermined SAPK and ceramide is a potent activator of SAPKs such as JNK, a role for ceramide in the activation of RAX might be possible. Results indicate that overexpression of exogenous RAX potentiates ceramide-induced killing. Furthermore, ceramide can potently inhibit protein synthesis. Since ceramide potently promotes RAX and eukaryotic initiation factor-2alpha phosphorylation, a possible role for ceramide in this process may involve the activation of PKR by RAX. Since 2-aminopurine, a serine/threonine kinase inhibitor that has previously been shown to inhibit PKR, blocks both the potentiation of ceramide killing by RAX and ceramide-induced inhibition of protein synthesis, ceramide appears to promote PKR activation, at least indirectly. Collectively, these findings suggest a novel role for ceramide in the regulation of protein synthesis and apoptosis.  相似文献   
58.
The apoptosis repressor with caspase recruitment domain (ARC) protein is known to suppress both intrinsic and extrinsic apoptosis. We previously reported that ARC expression is a strong, independent adverse prognostic factor in acute myeloid leukemia (AML). Here, we investigated the regulation and role of ARC in AML. ARC expression is upregulated in AML cells co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) and suppressed by inhibition of MAPK and PI3K signaling. AML patient samples with RAS mutations (N = 64) expressed significantly higher levels of ARC than samples without RAS mutations (N = 371) (P = 0.016). ARC overexpression protected and ARC knockdown sensitized AML cells to cytarabine and to agents that selectively induce intrinsic (ABT-737) or extrinsic (TNF-related apoptosis inducing ligand) apoptosis. NOD–SCID mice harboring ARC-overexpressing KG-1 cells had significantly shorter survival than mice injected with control cells (median 84 vs 111 days) and significantly fewer leukemia cells were present when NOD/SCID IL2Rγ null mice were injected with ARC knockdown as compared to control Molm13 cells (P = 0.005 and 0.03 at 2 and 3 weeks, respectively). Together, these findings demonstrate that MSCs regulate ARC in AML through activation of MAPK and PI3K signaling pathways. ARC confers drug resistance and survival advantage to AML in vitro and in vivo, suggesting ARC as a novel target in AML therapy.  相似文献   
59.
Molecular evolutionary processes modify DNA over time, creating both newly derived substitutions shared by related descendant lineages (phylogenetic signal) and “false” similarities which confound phylogenetic reconstruction (homoplasy). However, some types of DNA regions, for example those containing tandem duplicate repeats, are preferentially subject to homoplasy-inducing processes such as sporadically occurring concerted evolution and DNA insertion/deletion. This added level of homoplasic “noise” can make DNA regions with repeats less reliable in phylogenetic reconstruction than those without repeats. Most molecular datasets which distinguish among African hominoids support a human-chimpanzee clade; the most notable exception is from the involucrin gene. However, phylogenetic resolution supporting a chimpanzee-gorilla clade is based entirely on involucrin DNA repeat regions. This is problematic because (1) involucrin repeats are difficult to align, and published alignments are contradictory; (2) involucrin repeats are subject to DNA insertion/deletion; (3) gorillas are polymorphic in that some do not have repeats reported to be synapomorphies linking chimpanzees and gorillas. Gene tree/species tree conflicts can occur due to the sorting of ancestrally polymorphic alleles during speciation. Because hominoid females transfer between groups, mitochondrial and nuclear gene flow occur to the same extent, and the probability of conflict between mitochondrial and nuclear gene trees is theoretically low. When hominoid intraspecific mitochondrial variability is taken into account [based on cytochrome oxidase subunit II (COII) gene sequences], humans and chimpanzees are most closely related, showing the same relative degree of separation from gorillas as when single individuals representing species are analyzed. Conflicting molecular phylogenies can be explained in terms of molecular evolutionary processes and sorting of ancient polymorphisms. This perspective can enhance our understanding of hominoid molecular phylogenies. © 1994 Wiley-Liss, Inc.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号