首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   52篇
  2022年   7篇
  2021年   7篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   14篇
  2015年   19篇
  2014年   23篇
  2013年   26篇
  2012年   21篇
  2011年   20篇
  2010年   19篇
  2009年   20篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   23篇
  2004年   24篇
  2003年   17篇
  2002年   17篇
  2001年   18篇
  2000年   20篇
  1999年   14篇
  1998年   12篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   13篇
  1993年   4篇
  1992年   16篇
  1991年   11篇
  1990年   8篇
  1989年   12篇
  1988年   13篇
  1987年   14篇
  1986年   12篇
  1985年   4篇
  1984年   22篇
  1983年   8篇
  1982年   7篇
  1981年   13篇
  1980年   4篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1976年   13篇
  1975年   5篇
  1972年   3篇
  1969年   3篇
  1879年   7篇
排序方式: 共有705条查询结果,搜索用时 109 毫秒
31.
32.
Levels (percentage composition) of water, ash, carbohydrate, lipid, protein, and calories were determined for eggs, pentaculae, and adults of the sea cucumber Cucumaria curata Cowles. Component contents (μg/individual) were calculated for eggs and pentaculae. During the 28 days of development to hatching, the large yolky eggs gain water and ash, the total dry weight increasing from 169 to 190 μg/egg during embryogenesis. There were no statistically significant changes in lipid, protein, and caloric contents during embryogenesis, but carbohydrate decreased by 0.82 μg/egg.The decrease in carbohydrate is sufficient to account for estimated embryonic energy requirements. Based on the utilization of carbohydrate, embryos of C. curata show a nutritional pattern similar to that of the planktonic embryos of sea urchins and different from that of embryos developing from terrestrial eggs, freshwater eggs, and planktonic and demersal marine eggs.Although broods varied widely in egg number and mean egg dry weight, C. curata gives eggs which contain a constant proportion of organic components.Levels of ash, water, and protein in the adults exceeded those in the pentacula, and lipid comprises a much smaller proportion of the adult body than it did of the pentacula.  相似文献   
33.
34.
35.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
36.
PurposeTo determine whether alterations in knee joint muscle activation patterns during gait were related to structural severity determined by Kellgren–Lawrence (KL) radiographic grades, for those with a moderate knee OA classification.ScopeEighty-two individuals with knee OA, classified as moderate using a functional and clinical criterion were stratified on KL-grade (KL II, KL III and KL IV). Thirty-five asymptomatic individuals were matched for age and walking velocity. Lower limb motion and surface electromyograms from rectus femoris plus lateral and medial sites for the gastrocnemii, vastii and hamstring muscles were recorded during self-selected walking. Gait velocity and characteristics from sagittal plane knee angular displacement waveforms were calculated. Principal component analysis extracted amplitude and temporal features from electromyographic waveform. Analysis of variance models tested for main effects (group, muscle) and interactions (α = 0.05) for these features. No differences in anthropometrics, velocity, knee muscle strength and symptoms were found among the three OA groups (p > 0.05). Specific features from medial gastrocnemius, lateral hamstring and quadriceps amplitude and temporal patterns were significantly different among OA groups (p < 0.05).ConclusionsSystematic alterations in specific knee joint muscle activation patterns were associated with increasing structural severity based on KL-grades whereas other alterations were associated with the presence of OA.  相似文献   
37.
Autophagy defends the mammalian cytosol against bacterial invasion. Efficient bacterial engulfment by autophagy requires cargo receptors that bind (a) homolog(s) of the ubiquitin-like protein Atg8 on the phagophore membrane. The existence of multiple ATG8 orthologs in higher eukaryotes suggests that they may perform distinct functions. However, no specific role has been assigned to any mammalian ATG8 ortholog. We recently discovered that the autophagy receptor CALCOCO2/NDP52, which detects cytosol-invading Salmonella enterica serovar Typhimurium (S. Typhimurium), preferentially binds LC3C. The CALCOCO2/NDP52-LC3C interaction is essential for cell-autonomous immunity against cytosol-exposed S. Typhimurium, because cells lacking either protein fail to target bacteria into the autophagy pathway. The selectivity of CALCOCO2/NDP52 for LC3C is determined by a novel LC3C interacting region (CLIR), in which the lack of the key aromatic residue of canonical LIRs is compensated by LC3C-specific interactions. Our findings provide a new layer of regulation to selective autophagy, suggesting that specific interactions between autophagy receptors and the ATG8 orthologs are of biological importance.  相似文献   
38.

Background

Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR) is associated with daily disease-specific mortality, and how season might modify any association.

Objectives

To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect.

Methods

The distributed lag nonlinear model (DLNM) was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD), cardiovascular disease (CVD), respiratory disease (RD) and cerebrovascular disease (CBD)) in the full year, the cold season and the warm season.

Results

A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days), and then decreased.

Conclusions

Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.  相似文献   
39.
Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome-wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways.  相似文献   
40.
While much is known about adult obesity in nonhuman primates, very little is known regarding development of childhood adiposity. As small monkeys that are easy to handle and have a relatively fast life history, common marmoset monkeys (Callithrix jacchus) offer interesting opportunities to examine the question of fat versus lean mass growth in a nonhuman primate. This article provides an overview of our understanding of early life growth in mass in marmoset monkeys, based primarily upon our past 20 years of research, culminating in our recent findings on early life obesity in this species. Common marmosets display variance in early life growth patterns that is related to both pre‐ and postnatal factors and the marmoset uterine environment is exquisitely designed to reflect resources available for the gestation of multiple offspring, making them an interesting model of developmental programming. We have demonstrated that obesity can be generated in very early life in captive marmosets, with excess adiposity evident by one month of age, making this species a potentially valuable model in which to study pediatric obesity and its sequelae. Birth weight is associated with adiposity in animals vulnerable to obesity. Early life exposure to higher fat diets enhances the chances of postweaning obesity development. However, overall higher food consumption is also associated with obesity development at later ages. One unexpected finding in our studies has been the relatively high body fat percentage of neonatal (12–18%) marmosets suggesting that hypotheses regarding the uniqueness of high human neonatal adiposity merit further examination. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号