首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   52篇
  2022年   7篇
  2021年   7篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   14篇
  2015年   19篇
  2014年   23篇
  2013年   26篇
  2012年   21篇
  2011年   20篇
  2010年   19篇
  2009年   20篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   23篇
  2004年   24篇
  2003年   17篇
  2002年   17篇
  2001年   18篇
  2000年   20篇
  1999年   14篇
  1998年   12篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   13篇
  1993年   4篇
  1992年   16篇
  1991年   11篇
  1990年   8篇
  1989年   12篇
  1988年   13篇
  1987年   14篇
  1986年   12篇
  1985年   4篇
  1984年   22篇
  1983年   8篇
  1982年   7篇
  1981年   13篇
  1980年   4篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1976年   13篇
  1975年   5篇
  1972年   3篇
  1969年   3篇
  1879年   7篇
排序方式: 共有705条查询结果,搜索用时 31 毫秒
21.
22.
We have constructed a luc reporter vector for Dictyostelium discoideum using a 626-bp fragment from the nuclear-associated plasmid Ddp2. The ori from Ddp2 is localized within this fragment and was used to provide an autonomous replication sequence for the reporter vector. This reporter vector was stably retained in D. discoideum AX3K cells without alteration. The vector molecule was also found to exist in relatively low copy number compared to other Dictyostelium vectors in the transformed cells. We demonstrated the utility of this vector as a reporter vector with glycogen synthase promoter/luc fusions of varying sizes.  相似文献   
23.
24.
Neutrophil stimulation: receptor, membrane, and metabolic events   总被引:5,自引:0,他引:5  
In the neutrophil, binding of ligands to their appropriate receptors initiates a sequence of events culminating in the physiological responses of aggregation, degranulation, and superoxide anion generation. Calcium has been proposed as a second messenger in the activation sequence of the neutrophil. Increments in cytosolic free calcium are one of the first measurable events subsequent to receptor occupancy, followed by enhanced plasmalemmal permeability to calcium, a process that may serve to enhance the physiological responses. In contrast to calcium, cyclic AMP (cAMP) does not act as a signal in the activation sequence of the neutrophil. Increments in cAMP that are triggered by complete secretagogues may act as an inhibitory feedback mechanism. Protein kinases, both cAMP- and calcium/phospholipid-sensitive enzymes, may play a role in the activation sequence. Phosphorylation of proteins occurs during neutrophil activation. A role for phosphatidylinositol/phosphatidic acid turnover in calcium gating has been proposed. In addition, modulation of phospholipids could serve to activate a protein kinase C. Finally, phospholipids can serve as a source for arachidonic acid, which is metabolized by a 5-lipoxygenase pathway in the neutrophil. Products of this pathway, such as leukotriene B4, may serve to mediate or modulate the activation sequence.  相似文献   
25.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
26.
Ultra-microfluorometric techniques were adapted to follow several compounds related to energy metabolism through the developmental cycle of Dictyostelium discoideum. Each compound (ATP, trehalose, glucose, and ammonium ion) was found to be present in stalk and/or spore cells. The accumulation of NH4+ was interpreted as an indication of protein degradation, a source of energy in this organism. During the early stages of differentiation NH4+ was localized only in prestalk cells. However, it accumulated in spore cells during culmination such that levels were comparable in the two cell types by the end of development. Trehalose, an energy source for germinating spores, was found in both cell types but was preferentially degraded in stalk cells late in development. Glucose, the degradation product of trehalose, was localized in prestalk cells and varied inversely with trehalose levels. ATP was not localized in a specific cell type during development. However, ATP declined in stalk cells at an earlier stage of development.  相似文献   
27.
A series of Friend cell variants has been isolated by selecting for resistance to different inducers of Friend cell differentiation. This procedure selects for cells which have lost the capacity to differentiate terminally in the presence of inducer. Fluctuation analysis shows that these variants arise during culture and are not induced by the selective conditions. Moreover, mutagenesis of parental cells increases the frequency of occurrence of DMSO-resistant variants. Our evidence suggests that these resistant variants arise by two mechanisms. Some arise spontaneously at a relatively high rate (5 × 10?5?5 × 10?6 per cell per generation), but their phenotypes are not necessarily stable on removal of the selective conditions. Stable variants arise spontaneously at a lower frequency which is consistent with a true mutational origin.Screening of these stable resistant variants shows that they have different phenotypes. Some fail to respond to any inducer; others respond to all inducers tested except the one used for selection, whereas others respond to some but not all inducers. Most of the DMSO-resistant variants are noninducible by DMSO for all aspects of Friend cell differentiation tested (that is, globin mRNA, hemoglobin, spectrin and the ability to undergo terminal differentiation). Two variants, however, are inducible for an early marker of differentiation, the erythrocyte membrane protein spectrin, but not for other markers such as hemoglobin, globin RNA or terminal differentiation. This implies that the regulation of the globin pathway can be uncoupled from that of spectrin.  相似文献   
28.
Brain (BNP) and atrial natriuretic peptides (ANP) have been identified which may represent endogenous agonists of kidney receptor subtypes. Quantitative in vitro autoradiography was used to investigate the regional distribution of receptor subpopulations and the competitive inhibition of 125I porcine BNP1-26 (pBNP1-26) and 125I rat alpha-ANP1-28 (rANP1-28) renal binding sites. Specific, high affinity binding (Kd 0.2-1.37 nM range) was localized to glomeruli, inner medulla, interlobar and arcuate arteries, vasa recta bundles, and smooth muscle in the renal pelvis. pBNP1-26 competed for the same sites as rANP1-28 but displayed a lower potency and was less selective for nonclearance sites. Clearance binding sites were discriminated by competitive inhibition with C-ANP4-23 and comprised some 65% of glomerular sites as well as the vast majority of sites in the renal pelvis. Nonclearance sites predominated in the inner medulla and intrarenal arteries. C-terminal changes in amino acid sequence induced a significant loss of inhibitory potency. Immunohistochemical studies identified a distinct population of BNP-like immunoreactive renal nerve fibers, associated with intra-renal arteries. Circulating natriuretic peptides and BNP sequences derived from renal nerves may influence renal function by interacting with specific receptor subpopulations in the kidney.  相似文献   
29.
Enzymological studies have implicated two Ca(2+)-dependent endopeptidases in the conversion of proinsulin to insulin; a type 1 activity which cleaves on the C-terminal side of Arg31-Arg32 and a type 2 activity which cleaves C-terminally to Lys64-Arg65 in the proinsulin sequence. The possibility that these enzymes are related to the recently discovered family of mammalian subtilisin-like gene products (furin, PC2, and PC3) and the yeast propheromone-converting enzyme (KEX-2), was investigated. Degenerate oligonucleotide primers flanking the putative catalytic domain within this gene family were used in a polymerase chain reaction to amplify related sequences from rat insulinoma cDNA. One major product of 700 base pairs was obtained which was greater than 99% identical to the corresponding rat PC2 sequence. This cDNA was subcloned into the bacterial expression vector pGEX-3X to generate a recombinant protein for antibody production. Western blot analysis showed the immunoreactivity was prominent in neuroendocrine tissues as a 65-kDa protein. It was concentrated in secretory granule-enriched fractions of insulinoma tissue, where it was present as a readily solubilized monomeric protein. Deglycosylation studies using endoglycosidase H and N-glycanase showed that the 65-kDa protein was comprised of approximately 9% carbohydrate, consistent with the presence of three consensus sequences for N-linked glycosylation in rat PC2. The immunoreactivity co-eluted with the type 2 proinsulin endopeptidase on gel filtration and ion-exchange chromatography and the antisera specifically immunoprecipitated type 2 activity from insulin granule extracts. N-terminal sequence analysis of the immunoreactive protein gave two sequences which corresponded to residues 109-112 and 112-119 of rat PC2. This indicated that posttranslational processing of PC2 itself occurs C-terminally to basic amino acids to produce the mature enzyme. It is concluded that PC2 is the type 2 endopeptidase involved in proinsulin conversion. Localization of PC2 immunoreactivity to other tissues of the diffuse neuroendocrine system suggests that the type 2 endopeptidase also functions in the processing of precursor forms of other prohormones and polypeptide neurotransmitters.  相似文献   
30.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号