首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6821篇
  免费   667篇
  国内免费   2篇
  2022年   55篇
  2021年   120篇
  2020年   65篇
  2019年   72篇
  2018年   89篇
  2017年   66篇
  2016年   148篇
  2015年   278篇
  2014年   284篇
  2013年   413篇
  2012年   524篇
  2011年   467篇
  2010年   279篇
  2009年   227篇
  2008年   396篇
  2007年   419篇
  2006年   340篇
  2005年   306篇
  2004年   307篇
  2003年   306篇
  2002年   307篇
  2001年   88篇
  2000年   79篇
  1999年   88篇
  1998年   99篇
  1997年   66篇
  1996年   63篇
  1995年   50篇
  1994年   63篇
  1993年   58篇
  1992年   56篇
  1991年   48篇
  1990年   57篇
  1989年   52篇
  1988年   41篇
  1986年   42篇
  1985年   51篇
  1984年   47篇
  1983年   42篇
  1982年   46篇
  1981年   49篇
  1980年   39篇
  1979年   36篇
  1978年   39篇
  1977年   36篇
  1976年   36篇
  1975年   41篇
  1974年   37篇
  1973年   36篇
  1972年   38篇
排序方式: 共有7490条查询结果,搜索用时 15 毫秒
131.
Optimization of molecular design in cellular metabolism is a necessary condition for guaranteeing a good structure–function relationship. We have studied this feature in the design of glycogen by means of the mathematical model previously presented that describes glycogen structure and its optimization function [Meléndez-Hevia et al. (1993), Biochem J 295: 477–483]. Our results demonstrate that the structure of cellular glycogen is in good agreement with these principles. Because the stored glucose in glycogen must be ready to be used at any phase of its synthesis or degradation, the full optimization of glycogen structure must also imply the optimization of every intermediate stage in its formation. This case can be viewed as a molecular instance of the eye problem, a classical paradigm of natural selection which states that every step in the evolutionary formation of a functional structure must be functional. The glycogen molecule has a highly optimized structure for its metabolic function, but the optimization of the full molecule has meaning and can be understood only by taking into account the optimization of each intermediate stage in its formation. Received: 23 October 1996 / Accepted: 21 April 1997  相似文献   
132.
An integron is a genetic unit that includes the determinants of the components of a site-specific recombination system capable of capturing and mobilizing genes that are contained in mobile elements called gene cassettes. An integron also provides a promoter for expression of the cassette genes, and integrons thus act both as natural cloning systems and as expression vectors. The essential components of an integron are an int gene encoding a site-specific recombinase belonging to the integrase family, an adjacent site, attl, that is recognized by the integrase and is the receptor site for the cassettes, and a promoter suitably oriented for expression of the cassette-encoded genes. The cassettes are mobile elements that include a gene (most commonly an antibiotic-resistance gene) and an integrase-specific recombination site that is a member of a family of sites known as 59-base elements. Cassettes can exist either free in a circularized form or integrated at the attl site, and only when integrated is a cassette formally part of an integron. A single site-specific recombination event involving the integron-associated attl site and a cassette-associated 59-base element leads to insertion of a free circular cassette into a recipient integron. Multiple cassette insertions can occur, and integrons containing several cassettes have been found in the wild. The integrase also catalyses excisive recombination events that can lead to loss of cassettes from an integron and generate free circular cassettes. Due to their ability to acquire new genes, integrons have a clear role in the evolution of the genomes of the plasmids and transposons that contain them. However, a more general role in evolution is also likely. Events involving recombination between a specific 59-base-element site and a nonspecific secondary site have recently been shown to occur. Such events should lead either to the insertion of cassettes at non-specific sites or to the formation of stable cointegrates between different plasmid molecules, and a cassette situated outside the integron context has recently been identified.  相似文献   
133.
134.
Microbial metabolism affected the electrical impedance parameters of a two terminal-measuring cell-containing growth media. The relationship between microbial growth and relative changes in both The capacitive and resistive parts of impedance was examined. Both components of impedance were shown to be indicative of bacterial growth. In low conductivity media the change in the conductance of the media (Gsol) clearly correlated to bacterial growth. In more conductive media the relative changes in Gsol were smaller, and in these media measurements of the changes of polarization capacitance (Cpol) were useful for monitoring bacterial growth.Yeast growth in two media resulted in large changes in Cpol (20–100%) while the changes in Gsol were very small (1–4%). This result indicated that, for some combinations of microorganisms and media, measuring Cpol might be preferable over Gsol for the detection of microbial growth.Microbial metabolism resulted in a change of 2–2.5 units in pH. This pH change resulted in a 40% change in Cpol but less than a 14% change in Gsol.  相似文献   
135.
1H nuclear magnetic resonance (NMR) spectra at 500 MHz have been obtained for taurocholate/egg phosphatidylcholine mixtures of varying composition. The excellent chemical shift dispersion permits identification of most resonances for each component. This high-resolution character of the NMR spectra is retained until the phosphatidylcholine (PC) mole fraction exceeds 60–70% (the exact limit depends on ionic strength). 1H linewidths have been monitored as a function of solute composition in order to evaluate trends in local molecular mobility of each component as the distribution of aggregate particles is varied, and to examine the effects of added NaCl in altering micellar size and shape. Although prior light scattering studies (Mazer, N.A., Benedek, G.B. and Carey, M.C. (1980) Biochemistry 19, 601–615) and our own work indicate a 6-fold increase in particle hydrodynamic radius from pure taurocholate micelles to 1 : 1 taurocholate/PC mixtures containing 150 mM NaCl, both lipid components retain substantial motional freedom and exhibit narrow NMR signals in this compositional region. As the solubilization limit for PC is approached (approx. 2:1 PC:taurocholate), differential behavior is observed for the two components: the motion of taurocholate becomes preferentially restricted, while polar portions of the PC remain mobile until large multilayers predominate.  相似文献   
136.
Summary Nonimmunized 2/N guinea pigs respond to the presence of chemical carcinogen-transformed syngeneic tumorigenic cells with a sustained (delayed-hypersensitivity-type) 4-day intradermal induration consisting of predominantly polymorphonuclear leukocytes on day 1 and mononuclear cells by day 4, which is independent of the presence of tumor-specific antigens on the tumorigenic cells. Chemical carcinogen-induced morphologically transformed but nontumorigenic cells also induce a polymorphonuclear response by day 1, but neither induration nor a mononuclear response is present on day 4, demonstrating the specificity of the 4-day sustained indurative response for tumorigenic cells. Induration and cellular infiltrates are unaltered if tumor cells are treated prior to injection with the cytostatic lymphokine lymphotoxin or with x-irradiation to inhibit cell proliferation. The intradermal polymorphonuclear leukocyte host response on day 1, but not the mononuclear response on day 4, is also induced by mitomycin C-treated cells or a cytokine culture medium from the cells. No response is present on day 1 or day 4 when cell membranes or lyophilized cells are injected. Thus natural delayed-hypersensitivity-type skin reactivity is a mononuclear leukocyte response specifically directed against intact and metabolically active but not necessarily proliferating tumor cells.  相似文献   
137.
Photoaffinity labeling techniques have recently demonstrated that mammalian β1- and β2-adrenergic receptors reside on peptides of Mr 62 000–64 000. These receptor peptides are susceptible to endogenous metalloproteinases which produce peptides of Mr 30 000–55 000. Several proteinase inhibitors markedly attenuate this process, specifically EDTA and EGTA. In this study we investigated the functional significance of this proteolysis (and its inhibition) in the β2-adrenergic receptor-adenylate cyclase system derived from rat lung membranes. Membrane preparations containing proteolytically derived fragments of the receptor of Mr 40000–55 000 are fully functional with respect to their ability to bind β-adrenergic antagonist radioligands such as [3H]dihydroalprenolol and β-adrenergic antagonist photoaffinity reagents such as p-azido-m-[125I]iodobenzylcarazolol. They retain the ability to form a high-affinity, agonist-promoted, guanine nucleotide-sensitive complex thought to represent a ternary complex of agonist, receptor and guanine nucleotide regulatory protein. Nonetheless, after proteolysis, GTP is less able to revert this high-affinity receptor complex to one of lower affinity, and all aspects of adenylate cyclase stimulation are reduced. In addition, the functional integrity of the N protein in membranes prepared without proteinase inhibitors is reduced as assessed by reconstitution studies with the cyc[su− variant of S49 lymphoma cell membranes. These results suggest that endogenous proteolysis does not directly impair the ability of β-adrenergic receptors to either bind ligands or interact with the guanine nucleotide regulatory protein. However, they imply that endogenous proteolysis likely impairs the functionality of other components of the adenylate cyclase system, such as the nucleotide regulatory protein.  相似文献   
138.
DNA synthesis inhibition and recovery in L1210 and S-180 ascites tumors following 1-β-D-arabinofuranosylcytosine (Ara-C) and hydroxyurea (HU) were measured autoradiographically as a basis for optimizing drug schedules. Tumor bearing mice, 106 cells day O, were treated on day 4 with 20, 200 or 2000 mg/kg Ara-C or 50, 300 or 1800 mg/kg HU. At various intervals following drug, [3H]thymidine was administered i.p. and mice were killed 1 hr later. Tumor cells were analyzed for labeling index (LI) and grain count (GC) to determine the percentage of cells in S phase and the distribution of DNA synthesis rates among the labeled cells, respectively. Following each dose of HU, DNA synthesis was inhibited completely. Recovery of LI was rapid and approached control values by 6 hr. Following each dose of Ara-C, DNA synthesis was inhibited completely for at least 6 hr. Recovery of LI was first noted 6 hr following 20 mg/kg Ara-C and 9 hr following 200 mg/kg. Following both doses the LI reached 100% of the control value by 26 hr. GC analysis indicated that following Ara-C treatment, DNA synthesis was reinitiated first with cells with low GC from 6 to 12 hr followed by cells with increasing GC from 12 to 20 hr. the labeling intensity reached control values by 20 hr and an ‘overshoot’ occurred by 26 hr. These data suggest that the recovery of DNA synthesis rate is a gradual process. Survival data for mice receiving two doses of Ara-C indicated that the optimal interval for retreatment following the lower dose of Ara-C occurred by 6 hr as compared to 12–16 hr for the higher dose. These times coincided in both instances with recovery of LI to 33–50% of control values. Early recovery of LI may be the best method currently available for estimating the optimal time for retreatment with an S phase specific drug.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号