首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5997篇
  免费   565篇
  国内免费   2篇
  2022年   26篇
  2021年   117篇
  2020年   63篇
  2019年   67篇
  2018年   78篇
  2017年   60篇
  2016年   134篇
  2015年   266篇
  2014年   262篇
  2013年   388篇
  2012年   484篇
  2011年   441篇
  2010年   258篇
  2009年   210篇
  2008年   372篇
  2007年   384篇
  2006年   322篇
  2005年   275篇
  2004年   280篇
  2003年   275篇
  2002年   276篇
  2001年   68篇
  2000年   42篇
  1999年   57篇
  1998年   86篇
  1997年   53篇
  1996年   50篇
  1995年   40篇
  1994年   54篇
  1993年   43篇
  1992年   35篇
  1991年   31篇
  1990年   43篇
  1989年   34篇
  1988年   33篇
  1986年   29篇
  1985年   38篇
  1984年   37篇
  1983年   40篇
  1982年   41篇
  1981年   41篇
  1980年   33篇
  1978年   27篇
  1977年   25篇
  1976年   33篇
  1975年   29篇
  1974年   28篇
  1973年   27篇
  1972年   24篇
  1969年   25篇
排序方式: 共有6564条查询结果,搜索用时 15 毫秒
191.
192.
In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p < 0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p < 0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses.  相似文献   
193.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   
194.
Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signaling pathways. The effects of plant hormones can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. In this study, rice plants growing in normal and saline soils were exposed to abscisic acid (ABA), the safener cyprosulfamide or both compounds together. We found that cyprosulfamide, either alone or in combination with ABA, protected the plants from salinity stress and induced vigorous growth, including the formation of new tillers and early flowering. Proteomic analysis identified several proteins that were induced by stress and/or the chemical treatments, including the late embryogenesis abundant protein OsLEA3, a putative mitochondrial translocase and a putative fumarylacetoacetate hydrolase. The corresponding genes were induced by stress and/or the individual chemical treatments, but expression dropped back when the stress was removed. However, the combination of ABA and cyprosulfamide prolonged the expression of all three genes beyond the stress period, and allowed the plants to maintain their enhanced growth characteristics. These data support a model involving cooperation between the cyprosulfamide and ABA signaling pathways. Accordingly, it was found that cyprosulfamide induces ABA synthesis more robustly than salinity stress, allowing the two regulators to converge on certain downstream target genes. We discuss the impact of our results on current models for the hormonal regulation of stress response pathways in rice and other plants.  相似文献   
195.
Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post‐Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient‐induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F‐like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1‐like RAB GTPase) as essential for resistance to fungal penetration into the host cell.  相似文献   
196.
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4 inhibitor”. Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish “metabolic parasites”, like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted “antibiotics” to selectively starve cancer cells. Our results provide new support for the “seed and soil” hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.  相似文献   
197.
198.
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.  相似文献   
199.
Recent studies show that patients with myotonic dystrophy (DM) have an increased risk of specific malignancies, but estimates of absolute cancer risk accounting for competing events are lacking. Using the Swedish Patient Registry, we identified 1,081 patients with an inpatient and/or outpatient diagnosis of DM between 1987 and 2007. Date and cause of death and date of cancer diagnosis were extracted from the Swedish Cause of Death and Cancer Registries. We calculated non-parametric estimates of absolute cancer risk and cancer mortality accounting for the high non-cancer competing mortality associated with DM. Absolute cancer risk after DM diagnosis was 1.6% (95% CI=0.4-4%), 5% (95% CI=3-9%) and 9% (95% CI=6-13%) at ages 40, 50 and 60 years, respectively. Females had a higher absolute risk of all cancers combined than males: 9% (95% CI=4-14), and 13% (95% CI=9-20) vs. 2% (95%CI= 0.7-6) and 4% (95%CI=2-8) by ages 50 and 60 years, respectively) and developed cancer at younger ages (median age =51 years, range=22-74 vs. 57, range=43-84, respectively, p=0.02). Cancer deaths accounted for 10% of all deaths, with an absolute cancer mortality risk of 2% (95%CI=1-4.5%), 4% (95%CI=2-6%), and 6% (95%CI=4-9%) by ages 50, 60, and 70 years, respectively. No gender difference in cancer-specific mortality was observed (p=0.6). In conclusion, cancer significantly contributes to morbidity and mortality in DM patients, even after accounting for high competing DM mortality from non-neoplastic causes. It is important to apply population-appropriate, validated cancer screening strategies in DM patients.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号