首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99170篇
  免费   895篇
  国内免费   813篇
  2022年   44篇
  2021年   124篇
  2020年   65篇
  2019年   75篇
  2018年   11903篇
  2017年   10720篇
  2016年   7577篇
  2015年   854篇
  2014年   545篇
  2013年   686篇
  2012年   4676篇
  2011年   13235篇
  2010年   12234篇
  2009年   8423篇
  2008年   10135篇
  2007年   11726篇
  2006年   576篇
  2005年   791篇
  2004年   1249篇
  2003年   1301篇
  2002年   1061篇
  2001年   336篇
  2000年   212篇
  1999年   90篇
  1998年   101篇
  1997年   80篇
  1996年   69篇
  1995年   43篇
  1994年   60篇
  1993年   75篇
  1992年   67篇
  1991年   74篇
  1990年   58篇
  1989年   48篇
  1988年   55篇
  1987年   38篇
  1986年   30篇
  1985年   38篇
  1984年   44篇
  1983年   58篇
  1982年   48篇
  1981年   45篇
  1980年   34篇
  1976年   34篇
  1975年   35篇
  1974年   28篇
  1973年   27篇
  1972年   270篇
  1971年   296篇
  1962年   40篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
961.
962.
The serum half‐life, biological activity, and solubility of many recombinant glycoproteins depend on their sialylation. Monitoring glycoprotein sialylation during cell culture manufacturing is, therefore, critical to ensure product efficacy and safety. Here a high‐throughput method for semi‐quantitative fingerprinting of glycoprotein sialylation using capillary isoelectric focusing immunoassay on NanoPro (Protein Simple) platform was developed. The method was specific, sensitive, precise, and robust. It could analyze 2 μL of crude cell culture samples without protein purification, and could automatically analyze from 8 samples in 4 h to 96 samples in 14 h without analyst supervision. Furthermore, its capability to detect various changes in sialylation fingerprints during cell culture manufacturing process was indispensable to ensure process robustness and consistency. Moreover, the changes in the sialylation fingerprints analyzed by this method showed strong correlations with intact mass analysis using liquid chromatography and mass spectrometry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:235–241, 2016  相似文献   
963.
964.
965.
A revision of Bursera in the Greater Antilles and the Bahamas has confirmed that Commiphora does not occur in the region and that all but one species in the region belong to Bursera subgen. Bursera. Here we describe a new species, Bursera yaterensis; B. nashii is synonymized with B. glauca and B. ovata is synonymized with B. trinitensis; and we return five species from Commiphora to Bursera. A dichotomous key is provided using mostly vegetative characters due to the frequent lack of adequate reproductive material and the relative uniformity of most floral and fruit characters.  相似文献   
966.
967.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   
968.
The scale of resource heterogeneity may influence how resources are locally partitioned between co-existing large and small organisms such as trees and grasses in savannas. Scale-related plant responses may, in turn, influence herbivore use of the vegetation. To examine these scale-dependent bi-trophic interactions, we varied fertilizer [(nitrogen (N)/phosphorus (P)/potassium (K)] applications to patches to create different scales of nutrient patchiness (patch size 2 × 2 m, 10 × 10 m, or whole-plot 50 × 50 m) in a large field experiment in intact African savanna. Within-patch fertilizer concentration and the total fertilizer load per plot were independently varied. We found that fertilization increased the leaf N and P concentrations of trees and grasses, resulting in elevated utilization by browsers and grazers. Herbivory off-take was particularly considerable at higher nutrient concentrations. Scale-dependent effects were weak. The net effect of fertilization and herbivory was that plants in fertilized areas tended to grow less and develop smaller rather than larger standing biomass compared to plants growing in areas that remained unfertilized. When all of these effects were considered together at the community (plot) level, herbivory completely eliminated the positive effects of fertilization on the plant community. While this was true for all scales of fertilization, grasses tended to profit more from coarse-grained fertilization and trees from fine-grained fertilization. We conclude that in herbivore-dominated communities, such as the African savanna, nutrient patchiness results in the herbivore community profiting rather more than the plant community, irrespective of the scale of patchiness. At the community level, the allometric scaling theory’s prediction of plant—and probably also animal—production does not hold or may even be reversed as a result of complex bi-trophic interactions.  相似文献   
969.

Aims

This work concentrated on understanding the allocation of Cd recently taken up between the organs of sunflower at early and middle reproductive growth stages. The roles of transpiration and allometry were investigated.

Methods

Sunflowers were grown hydroponically in greenhouse, being exposed to low concentrations of Cd (pCd2+ = 11.03). At flower bud and grain filling stages, plants were exposed for three days to 111Cd and at the same time, subjected or not to fans to increase the transpiration. The partitioning of 111Cd between plant organs measured by high resolution ICP-MS was then modelled.

Results

Although the use of fans increased the plant water uptake and transpiration by about 20%, there were no significant effects on the partitioning of recent Cd. Most of the recent Cd was recovered in roots (60%) and only 2.8% were found in seeds (0.8% for the husk and 2.0% for the almonds). The sequestration of recent Cd in a plant organ was successfully explained by its biomass and except for leaves, by the biomass of other organs acting as competitive sinks.

Conclusions

This work proposes a modelling approach for the partitioning of the labelled Cd between plant organs in sunflower.
  相似文献   
970.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号