首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5814篇
  免费   528篇
  国内免费   1篇
  6343篇
  2023年   32篇
  2022年   74篇
  2021年   148篇
  2020年   70篇
  2019年   107篇
  2018年   117篇
  2017年   108篇
  2016年   166篇
  2015年   299篇
  2014年   296篇
  2013年   392篇
  2012年   552篇
  2011年   486篇
  2010年   336篇
  2009年   291篇
  2008年   363篇
  2007年   409篇
  2006年   387篇
  2005年   323篇
  2004年   308篇
  2003年   299篇
  2002年   225篇
  2001年   46篇
  2000年   41篇
  1999年   43篇
  1998年   60篇
  1997年   22篇
  1996年   35篇
  1995年   26篇
  1994年   21篇
  1993年   30篇
  1992年   18篇
  1991年   13篇
  1990年   17篇
  1989年   24篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6343条查询结果,搜索用时 15 毫秒
91.
Summary A data acquisition/control microcomputer system was interfaced to a commercial HPLC data transmission module. Control of substrate (ethanol) levels for four 7.5 L fermenters containing 100 g/L wet weight of the yeastCandida norvegensis was accomplished by employing intermittent, automated HPLC monitoring and a BASIC-encoded proportional integral policy for controlling substrate feed rates. Ethanol levels were maintained at 0.25, 0.50, 0.75 and 1.00% w/v.  相似文献   
92.
The shape and movement of the vocal tract are known to influence bird song. Current theory predicts that large bill and body size are correlated with low frequency song and slow trill rate. It is also widely accepted that song characteristics are important for mate choice by females. We investigated the relationship between bill morphology, song characteristics, and pairing success in Darwin's small tree finch Camarhynchus parvulus , on the Galapagos Islands. Contrary to predictions from a previous cross-species study on Darwin's finches, we found that individuals with larger bill size produced songs with slow trill rate, high dominant frequency, and broad frequency bandwidth, indicating that song is a reliable signal of bill morphology. Vocal performance as indicated by the deviation from an upper performance limit was higher in paired than unpaired males. Pairing was not skewed in favour of a particular bill size, and both small and large billed males that sang high performance song had high pairing success. The reliable signalling function of song has implications for female choice and territorial defence, given that both females and conspecific competitors can assess the relative size of males' bills through song, while females may use vocal performance as a signal of male quality.  相似文献   
93.
Pseudomonas aeruginosa produces extracellular DNA which functions as a cell-to-cell interconnecting matrix component in biofilms. Comparison of extracellular DNA and chromosomal DNA by the use of polymerase chain reaction and Southern analysis suggested that the extracellular DNA is similar to whole-genome DNA. Evidence that the extracellular DNA in P. aeruginosa biofilms and cultures is generated via lysis of a subpopulation of the bacteria was obtained through experiments where extracellular beta-galactosidase released from lacZ-containing P. aeruginosa strains was assessed. Experiments with the wild type and lasIrhlI, pqsA, pqsL and fliMpilA mutants indicated that the extracellular DNA is generated via a mechanism which is dependent on acyl homoserine lactone and Pseudomonas quinolone signalling, as well as on flagella and type IV pili. Microscopic investigation of flow chamber-grown wild-type P. aeruginosa biofilms stained with different DNA stains suggested that the extracellular DNA is located primarily in the stalks of mushroom-shaped multicellular structures, with a high concentration especially in the outer part of the stalks forming a border between the stalk-forming bacteria and the cap-forming bacteria. Biofilms formed by lasIrhlI, pqsA and fliMpilA mutants contained less extracellular DNA than biofilms formed by the wild type, and the mutant biofilms were more susceptible to treatment with sodium dodecyl sulphate than the wild-type biofilm.  相似文献   
94.

Background

Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function.

Methodology/Principal Findings

We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4′-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets.

Conclusions/Significance

Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds.  相似文献   
95.
Lens regeneration in adult salamanders occurs at the pupillary margin of the mid-dorsal iris where pigmented epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. It is not understood how the injury caused by removal of the lens (lentectomy) in one location is linked to initiating the response in a different spatial location (dorsal iris) and to this particular sector. We propose that the blood provides a link between the localised coagulation and signal transduction pathways that lead to regeneration. A transmembrane protein (tissue factor) is expressed in a striking patch-like domain in the dorsal iris of the newt that localises coagulation specifically to this location, but is not expressed in the axolotl, a related species that does not show thrombin activation after lentectomy and cannot regenerate its lens. Our hypothesis is that tissue factor expression localises the initiation of regeneration through the activation of thrombin and the recruitment of blood cells, leading to local growth factor release. This is the first example of gene expression in a patch of cells that prefigures the location of a regenerative response, and links the immune system with the initiation of a regenerative program.  相似文献   
96.
Actinoporins are eukaryotic pore-forming proteins that create 2-nm pores in natural and model lipid membranes by the self-association of four monomers. The regions that undergo conformational change and form part of the transmembrane pore are currently being defined. It was shown recently that the N-terminal region (residues 10-28) of equinatoxin, an actinoporin from Actinia equina, participates in building of the final pore wall. Assuming that the pore is formed solely by a polypeptide chain, other parts of the toxin should constitute the conductive channel and here we searched for these regions by disulfide scanning mutagenesis. Only double cysteine mutants where the N-terminal segment 1-30 was attached to the beta-sandwich exhibited reduced hemolytic activity upon disulfide formation, showing that other parts of equinatoxin, particularly the beta-sandwich and importantly the C-terminal alpha-helix, do not undergo large conformational rearrangements during the pore formation. The role of the beta-sandwich stability was independently assessed via destabilization of a part of its hydrophobic core by mutations of the buried Trp117. These mutants were considerably less stable than the wild-type but exhibited similar or slightly lower permeabilizing activity. Collectively these results show that a flexible N-terminal region and stable beta-sandwich are pre-requisite for proper pore formation by the actinoporin family.  相似文献   
97.
BACKGROUND: Indole-3-carbinol (I3C) is a product of the hydrolysis of glucobrassicin that is found in cruciferous vegetables. I3C can intervene in toxic processes that are mediated by oxidative mechanisms because it possesses the chemical and pharmacokinetic properties necessary to provide a free radical trap. Cyclophosphamide (CP) is a bifunctional alkylating agent known to produce DNA damage and to cause developmental toxicity, including malformations, in laboratory animals. METHODS: Pregnant CD-1 mice were given a 100 mg/kg dose of I3C 24 or 48 hr before administration of 20 mg/kg CP on gestation day 10 (GD 10). Controls were given the vehicle (DMSO), I3C, or CP. This regimen was carried out to determine if I3C could protect against the developmental toxicity of alkylating agents, such as CP. Dams were sacrificed on GD 17 and their litters were examined for adverse effects. RESULTS: Treatment with I3C 48 hr before CP administration was associated with decreased fetal limb and tail malformations. Limb malformation incidences were reduced from 42% litters affected in the CP control to 16% in the I3C/CP 48-hr treatment group, and tail malformations were reduced from 45% in the CP control to 16% in the I3C/CP 48-hr treatment group, indicating a protective effect of prior exposure to I3C. I3C given 24 hr before CP had no significant protective effect, while having an apparently adverse consequence with regard to the incidence of talipes. CONCLUSIONS: Exposure of a developing mammal to indole-3-carbinol before exposure to cyclophosphamide during organogenesis can influence the teratogenicity of cyclophosphamide.  相似文献   
98.
Introgressive hybridization is one of the major threats to species conservation, and is often induced by human influence on the natural habitat of wildlife species. The ability to accurately identify introgression is critical to understanding its importance in evolution and effective conservation management of species. Hybridization between North American bison (Bison bison) and domestic cattle (Bos taurus) as a result of human activities has been recorded for over 100 years, and domestic cattle mitochondrial DNA was previously detected in bison populations. In this study, linked microsatellite markers were used to identify domestic cattle chromosomal segments in 14 genomic regions from 14 bison populations. Cattle nuclear introgression was identified in five populations, with an average frequency per population ranging from 0.56% to 1.80%. This study represents the first use of linked molecular markers to examine introgression between mammalian species and the first demonstration of domestic cattle nuclear introgression in bison. To date, six public bison populations have been identified with no evidence of mitochondrial or nuclear domestic cattle introgression, providing information critical to the future management of bison genetic resources. The ability to identify even low levels of introgression resulting from historic hybridization events suggests that the use of linked molecular markers to identify introgression is a significant development in the study of introgressive hybridization across a broad range of taxa.  相似文献   
99.
Infection of epithelial cells by Cryptosporidium parvum triggers a variety of host-cell innate and adaptive immune responses including release of cytokines/chemokines and up-regulation of antimicrobial peptides. The mechanisms that trigger these host-cell responses are unclear. Thus, we evaluated the role of TLRs in host-cell responses during C. parvum infection of cultured human biliary epithelia (i.e., cholangiocytes). We found that normal human cholangiocytes express all known TLRs. C. parvum infection of cultured cholangiocytes induces the selective recruitment of TLR2 and TLR4 to the infection sites. Activation of several downstream effectors of TLRs including IL-1R-associated kinase, p-38, and NF-kappaB was detected in infected cells. Transfection of cholangiocytes with dominant-negative mutants of TLR2 and TLR4, as well as the adaptor molecule myeloid differentiation protein 88 (MyD88), inhibited C. parvum-induced activation of IL-1R-associated kinase, p-38, and NF-kappaB. Short-interfering RNA to TLR2, TLR4, and MyD88 also blocked C. parvum-induced NF-kappaB activation. Moreover, C. parvum selectively up-regulated human beta-defensin-2 in directly infected cells, and inhibition of TLR2 and TLR4 signals or NF-kappaB activation were each associated with a reduction of C. parvum-induced human beta-defensin-2 expression. A significantly higher number of parasites were detected in cells transfected with a MyD88 dominant-negative mutant than in the control cells at 48-96 h after initial exposure to parasites, suggesting MyD88-deficient cells were more susceptible to infection. These findings demonstrate that cholangiocytes express a variety of TLRs, and suggest that TLR2 and TLR4 mediate cholangiocyte defense responses to C. parvum via activation of NF-kappaB.  相似文献   
100.
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号