首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8387篇
  免费   949篇
  国内免费   1篇
  2021年   101篇
  2019年   66篇
  2018年   110篇
  2017年   104篇
  2016年   140篇
  2015年   267篇
  2014年   287篇
  2013年   379篇
  2012年   421篇
  2011年   419篇
  2010年   281篇
  2009年   227篇
  2008年   370篇
  2007年   407篇
  2006年   350篇
  2005年   365篇
  2004年   327篇
  2003年   306篇
  2002年   299篇
  2001年   169篇
  2000年   175篇
  1999年   145篇
  1998年   127篇
  1997年   127篇
  1996年   104篇
  1995年   104篇
  1994年   115篇
  1993年   100篇
  1992年   160篇
  1991年   129篇
  1990年   113篇
  1989年   119篇
  1988年   109篇
  1987年   125篇
  1986年   97篇
  1985年   137篇
  1984年   144篇
  1983年   106篇
  1982年   126篇
  1981年   115篇
  1980年   102篇
  1979年   94篇
  1978年   65篇
  1977年   72篇
  1976年   79篇
  1975年   64篇
  1974年   76篇
  1973年   65篇
  1972年   57篇
  1971年   55篇
排序方式: 共有9337条查询结果,搜索用时 15 毫秒
991.
The thyroidal sodium iodide symporter (NIS) in combination with various radioactive isotopes has shown promise as a therapeutic gene in various tumor models. Therapy depends on adequate retention of the isotope in the tumor. We hypothesized that in the absence of iodide organification, isotope trapping is a dynamic process either due to slow efflux or re-uptake of the isotope by cells expressing NIS. Iodide efflux is slower in ARH-77 and K-562 cells expressing NIS compared to a thyroid cell line. Isotope retention half times varied linearly with the number of cells expressing NIS. With sufficient NIS expression, iodide efflux is a zero-order process. Efflux kinetics in the presence or absence of perchlorate also supports the hypothesis that iodide re-uptake occurs and contributes to the retention of the isotope in tumor cells. Iodide organification was insignificant. In vivo studies in tumors composed of mixed cell populations confirmed these observations.  相似文献   
992.
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.  相似文献   
993.
Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.  相似文献   
994.
Lecithin-retinol acyltransferase (LRAT), an enzyme present mainly in the retinal pigmented epithelial cells and liver, converts all-trans-retinol into all-trans-retinyl esters. In the retinal pigmented epithelium, LRAT plays a key role in the retinoid cycle, a two-cell recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. We disrupted mouse Lrat gene expression by targeted recombination and generated a homozygous Lrat knock-out (Lrat-/-) mouse. Despite the expression of LRAT in multiple tissues, the Lrat-/- mouse develops normally. The histological analysis and electron microscopy of the retina for 6-8-week-old Lrat-/- mice revealed that the rod outer segments are approximately 35% shorter than those of Lrat+/+ mice, whereas other neuronal layers appear normal. Lrat-/- mice have trace levels of all-trans-retinyl esters in the liver, lung, eye, and blood, whereas the circulating all-trans-retinol is reduced only slightly. Scotopic and photopic electroretinograms as well as pupillary constriction analyses revealed that rod and cone visual functions are severely attenuated at an early age. We conclude that Lrat-/- mice may serve as an animal model with early onset severe retinal dystrophy and severe retinyl ester deprivation.  相似文献   
995.
A standardized kinesin nomenclature   总被引:28,自引:0,他引:28  
In recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered.  相似文献   
996.
We investigated the formation and pharmacology of prostaglandin E(3) (PGE(3)) derived from fish oil eicosapentaenoic acid (EPA) in human lung cancer A549 cells. Exposure of A549 cells to EPA resulted in the rapid formation and export of PGE(3.) The extracellular ratio of PGE(3) to PGE(2) increased from 0.08 in control cells to 0.8 in cells exposed to EPA within 48 h. Incubation of EPA with cloned ovine or human recombinant cyclooxygenase 2 (COX-2) resulted in 13- and 18-fold greater formation of PGE(3), respectively, than that produced by COX-1. Exposure of A549 cells to 1 microM PGE(3) inhibited cell proliferation by 37.1% (P < 0.05). Exposure of normal human bronchial epithelial (NHBE) cells to PGE(3), however, had no effect. When A549 cells were exposed to EPA (25 microM) or a combination of EPA and celecoxib (a selective COX-2 inhibitor), the inhibitory effect of EPA on the growth of A549 cells was reversed by the presence of celecoxib (at both 5 and 10 microM). This effect appears to be associated with a 50% reduction of PGE(3) formation in cells treated with a combination of EPA and celecoxib compared with cells exposed to EPA alone. These data indicate that exposure of lung cancer cells to EPA results in a decrease in the COX-2-mediated formation of PGE(2), an increase in the level of PGE(3), and PGE(3)-mediated inhibition of tumor cell proliferation.  相似文献   
997.
Alzheimer's disease (AD) brain reveals high rates of oxygen consumption and oxidative stress, altered antioxidant defences, increased oxidized polyunsaturated fatty acids, and elevated transition metal ions. Mitochondrial dysfunction in AD is perhaps relevant to these observations, as such may contribute to neurodegenerative cell death through the formation of reactive oxygen species (ROS) and the release of molecules that initiate programmed cell death pathways. In this study, we analyzed the effects of beta-amyloid peptide (Abeta) on human teratocarcinoma (NT2) cells expressing endogenous mitochondrial DNA (mtDNA), mtDNA from AD subjects (AD cybrids), and mtDNA from age-matched control subjects (control cybrids). In addition to finding reduced cytochrome oxidase activity, elevated ROS, and reduced ATP levels in the AD cybrids, when these cell lines were exposed to Abeta 1-40 we observed excessive mitochondrial membrane potential depolarization, increased cytoplasmic cytochrome c, and elevated caspase-3 activity. When exposed to Abeta, events associated with programmed cell death are activated in AD NT2 cybrids to a greater extent than they are in control cybrids or the native NT2 cell line, suggesting a role for mtDNA-derived mitochondrial dysfunction in AD degeneration.  相似文献   
998.
Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.  相似文献   
999.
Two types of geminate structures were purified from African cassava mosaic geminivirus (ACMV)-infected Nicotiana benthamiana plants and analyzed by electron cryomicroscopy and image reconstruction. After cesium sulfate density gradient centrifugation, they were separated into lighter top (T) and heavier bottom (B) components. T particles comigrated with host proteins, whereas B particles were concentrated in a cesium density typical for complete virions. Both particles were composed of two incomplete icosahedra of 11 capsomers each, but T particles were slightly larger (diameter, 22.5 nm) and less dense in the interior than B particles (diameter, 21.5 nm). T particles were frequently associated with small globules of approximately 14 nm diameter of unknown origin. The overall structure of ACMV, a begomovirus transmitted by whiteflies, was similar to that of Maize streak virus (MSV), a mastrevirus transmitted by leafhoppers, although the vertices of the icosahedra were less pronounced. Models of ACMV coat proteins based on Satellite tobacco necrosis virus support the exposure of parts of the molecule essential for transmission specificity by whiteflies and provide possible structural explanations for the smaller protrusion of the ACMV capsid relative to MSV. The differences of ACMV and MSV virion shapes are discussed with reference to their different animal vectors.  相似文献   
1000.
Lentiviral Gag proteins contain a short spacer sequence that separates the capsid (CA) from the downstream nucleocapsid (NC) domain. This short spacer has been shown to play an important role in the assembly of human immunodeficiency virus type 1 (HIV-1). We have now extended this finding to the CA-NC spacer motif within the Gag protein of bovine immunodeficiency virus (BIV). Mutation of this latter spacer sequence led to dramatic reductions in virus production, which was mainly attributed to the severely disrupted association of the mutated Gag with the plasma membrane, as shown by the results of membrane flotation assays and confocal microscopy. Detailed mutagenesis analysis of the BIV CA-NC spacer region for virus assembly determinants led to the identification of two key residues, L368 and M372, which are separated by three amino acids, 369-VAA-371. Incidentally, the same two residues are present within the HIV-1 CA-NC spacer region at positions 364 and 368 and have also been shown to be crucial for HIV-1 assembly. Regardless of this conservation between these two viruses, the BIV CA-NC spacer could not be replaced by its HIV-1 counterpart without decreasing virus production, as opposed to its successful replacement by the CA-NC spacer sequences from the nonprimate lentiviruses such as feline immunodeficiency virus (FIV), equine infectious anemia virus and visna virus, with the sequence from FIV showing the highest effectiveness in this regard. Taken together, these data suggest a pivotal role for the CA-NC spacer region in the assembly of BIV Gag; however, the mechanism involved therein may differ from that for the HIV-1 CA-NC spacer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号