首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   22篇
  国内免费   1篇
  2022年   4篇
  2021年   3篇
  2019年   11篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   15篇
  2012年   20篇
  2011年   13篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   12篇
  2003年   16篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   9篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   9篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1973年   6篇
  1972年   2篇
  1971年   2篇
  1968年   2篇
  1966年   2篇
  1944年   2篇
排序方式: 共有351条查询结果,搜索用时 187 毫秒
31.
Cold preservation results in cell death via iron-dependent formation of reactive oxygen species, leading to apoptosis during rewarming. We aimed to study cold-induced damage (i.e., injury as a consequence of hypothermia itself and not cold ischemia) in proximal tubular cells (PTC) in various preservation solutions presently applied and to clarify the role of mitochondria in this injury. Primary cultures of rat PTC were incubated at 4 degrees C for 24 h in culture medium, UW, Euro-Collins or HTK solution with and without the iron chelator desferal and rewarmed at 37 degrees C in culture medium. Cell damage, morphology, and apoptosis were studied and mitochondrial membrane potential was assessed by fluorescence microscopy. Cold incubation of PTC in culture medium followed by rewarming caused marked cell damage compared to warm incubation alone (LDH release 39+/-10% vs. 1.6+/-0.3%). Cold-induced damage was aggravated in all preservation solutions (LDH release 85+/-2% for UW; similar in Euro-Collins and HTK). After rewarming, cells showed features suggestive for apoptosis. Desferal prevented cell injury in all solutions (e.g., 8+/-2% for UW). Mitochondrial membrane potential was lost during rewarming and this loss could also be inhibited by desferal. Trifluoperazine, which is known to inhibit mitochondrial permeability transition (MPT), was able to prevent cold-induced injury (LDH 85+/-5% vs. 12+/-2%). We conclude that cold-induced injury occurs in PTC and is aggravated by UW, Euro-Collins, and HTK solution. Iron-dependent MPT is suggested to play a role in this damage. Strategies to prevent cold-induced injury should aim at reducing the availability of "free" iron.  相似文献   
32.
A comparative analysis of the larval and presumptive juvenile neuromuscular systems among actinotroch larvae was performed using confocal laser microscopy with probes for F-actin and serotonin. Currently, there are two main categories of larval nervous systems based on the origin of the nerve fibers that innervate the larval tentacles. Characteristics of the serotonergic cells of the larval apical ganglion and juvenile nervous system have remained relatively conserved, but the structure of the secondary (hood) sense organ and the juvenile tentacles has diversified among species. Differences in larval musculature are mainly associated with differences in hood morphology. The presumptive, juvenile neuromuscular system is either integrated or separated from that of the larva based on the origin of the juvenile tentacles. Among species, the juvenile tentacles are made by remodeling the larval tentacles, developed from a basal tentacular thickening, or developed as a completely separate set in the larva. Differentiation of the neuromuscular structures of the juvenile tentacles is more diverse than their outward morphological characteristics would suggest. Importance of these larval characters is discussed in terms of current problems that exist within phoronid systematics. Evolutionary implications of these morphological characters are discussed among the phoronids, brachiopods, and related bilaterians. Overall, the integration or separation of larval and juvenile neuromuscular characters may yield insights into the evolution of lophotrochozoan body plans.  相似文献   
33.
Report of the round table conference summarizing the International Symposium on "Melatonin: Clinical Significance and Therapeutic Applications" is presented in this article. Some sleep disorders and circadian rhythm disturbances are the widely accepted indications for melatonin treatment. However, other possibilities for use of melatonin in the therapy should be also taken into account, including a co-treatment in cancer patients and free radical-related diseases. All aspects of the possible therapeutic use of melatonin as well as its safety, dosage, side effects and contraindications are discussed herein based on the round table conference and they are presented in this paper.  相似文献   
34.
This brief review summarizes some of the biological effects of light exposure at an inappropriate time (during the normal dark period) and the potential negative physiological consequences of this light exposure. Two major systems are significantly influenced by light at night. Thus, the circadian system and melatonin synthesis are altered when light is extended into the normal dark period or when the dark period is interrupted by light. This summary reviews the potential sequelae of chronic inappropriate light exposure and the suppression of endogenous melatonin levels. Given that melatonin is a free radical scavenger and antioxidant, conditions that involve free radical damage may be aggravated by light suppression of melatonin levels. The conditions of particular interest for this review are excessive DNA damage (which potentially leads to cancer), cellular destruction in neurodegenerative diseases and aging itself. Further research should be conducted to more accurately define the potential negative impact of light at abnormal times on animal and human pathophysiology.  相似文献   
35.
Expanding upon a preliminary communication (Nature 417 (2002) 166), we here further develop a "multiple-causes model" of allometry, where the exponent b is the sum of the influences of multiple contributors to control. The relative strength of each contributor, with its own characteristic value of b(i), is determined by c(i), the control contribution or control coefficient. A more realistic equation for the scaling of metabolism with body size thus can be written as BMR=MR(0)Sigmac(i)(M/M(0))(bi), where MR(0) is the "characteristic metabolic rate" of an animal with a "characteristic body mass", M(0). With M(0) of 1 unit mass (usually kg), MR(0) takes the place of the value a, found in the standard scaling equation, b(i) is the scaling exponent of the process i, and c(i) is its control contribution to overall flux, or the control coefficient of the process i. One can think of this as an allometric cascade, with the b exponent for overall energy metabolism being determined by the b(i) and c(i) values for key steps in the complex pathways of energy demand and energy supply. Key intrinsic factors (such as neural and endocrine processes) or ecological extrinsic factors are considered to act through this system in affecting allometric scaling of energy turnover. Applying this model to maximum vs. BMR data for the first time explains the differing scaling behaviour of these two biological states in mammals, both in the absence and presence of intrinsic regulators such as thyroid hormones (for BMR) and catecholamines (for maximum metabolic rate).  相似文献   
36.
Hyperglycemia plays a critical role in the development and progression of diabetic neuropathy. One of the mechanisms by which hyperglycemia causes neural degeneration is via the increased oxidative stress that accompanies diabetes. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) and S100B, both astrocytic markers. In the present study, we examined glial reactivity in hippocampus, cortex, and cerebellum of streptozotocin (STZ)-induced diabetic rats by determining the expression of GFAP and S-100B and we evaluated the effect of melatonin on the glial response. Western blot measurement of contents in brain regions after 6 weeks of STZ-induced diabetes indicated significant increases in these constituents compared with those in nondiabetic controls. Administration of melatonin prevented the upregulation of GFAP in all brain regions of diabetic rats. Using GFAP immunohistochemistry, we observed an increase in GFAP immunostaining in the hippocampus of STZ-diabetic rats relative to levels in the control brains. Treatment with melatonin resulted in an obvious reduction of GFAP-immunoreactive astrocytes in hippocampus. Like GFAP, S100B levels also were increased in all three brain areas of diabetic rats, an effect also reduced by melatonin treatment. Finally, the levels of lipid peroxidation products were elevated as a consequence of diabetes, with this change also being prevented by melatonin. These results suggest that diabetes causes increased glial reactivity possibly due to elevated oxidative stress, and administration of melatonin represents an achievable adjunct therapy for preventing gliosis.  相似文献   
37.
Actions of melatonin in the reduction of oxidative stress   总被引:18,自引:0,他引:18  
Melatonin was discovered to be a direct free radical scavenger less than 10 years ago. Besides its ability to directly neutralize a number of free radicals and reactive oxygen and nitrogen species, it stimulates several antioxidative enzymes which increase its efficiency as an antioxidant. In terms of direct free radical scavenging, melatonin interacts with the highly toxic hydroxyl radical with a rate constant equivalent to that of other highly efficient hydroxyl radical scavengers. Additionally, melatonin reportedly neutralizes hydrogen peroxide, singlet oxygen, peroxynitrite anion, nitric oxide and hypochlorous acid. The following antioxidative enzymes are also stimulated by melatonin: superoxide dismutase, glutathione peroxidase and glutathione reductase. Melatonin has been widely used as a protective agent against a wide variety of processes and agents that damage tissues via free radical mechanisms.  相似文献   
38.
We have reported the complete sequence of the DNA polymerase gene from the virus that infected a filamentous brown alga, Feldmannia sp. (FsV). The DNA polymerase gene from FsV encoded 986 amino acids and contained all the conserved motifs of 3'-5' exonuclease domains and catalytic domains found in B-family (α-like) DNA polymerases. The codons for the FsV DNA polymerase appeared to have some bias toward guanine/cytosine (G/C) in the third position. The phylogenetic analysis of the FsV DNA polymerase gene and other viral DNA polymerase genes indicated that FsV belongs to a family of algal viruses recently defined as Phycodnaviridae.  相似文献   
39.
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.  相似文献   
40.
The decrease of melatonin production with aging contributes to the decline in immune function as organisms age. Treatment with the exogenously administered indoleamine restores the reduced immunological functions. Therefore, we investigated the effect of melatonin on viability, phagocyte ingestion capacity, and free radical generation levels of heterophils from young and old ringdove (Streptopelia risoria) aged 3–4 and 11–13 years, respectively. Animals received a single oral dose of melatonin 1 h before lights off for three consecutive days. Experiments were performed at the acrophases and nadirs of melatonin. Melatonin treatment significantly increased serum melatonin levels at the acrophases, but not at the nadirs of the two age groups. In both young and old animals there was increased heterophil viability at acrophases with respect to nadirs, and also increased cell resistance to oxidative stress in the old animals after the melatonin treatment. At acrophases, the index, percentage and efficiency of phagocytosis all increased significantly, and superoxide anion levels decreased significantly with respect to the nadir values of vehicle and melatonin-treated animals, the effect being greater in young than in old ringdoves. At the nadirs, no change was observed in any parameter analyzed. In both young and old animals, phagocytosis and melatonin were positively correlated, while superoxide anion levels and melatonin were negatively correlated. In conclusion, exogenous melatonin enhanced heterophil viability in old animals as well as increasing phagocytosis and free-radical scavenging in both age groups during the nocturnal period, accompanied by an increase in the levels of the indoleamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号