首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   22篇
  国内免费   1篇
  2022年   4篇
  2021年   3篇
  2019年   11篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   15篇
  2012年   20篇
  2011年   13篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   12篇
  2003年   16篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   9篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   9篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1973年   6篇
  1972年   2篇
  1971年   2篇
  1968年   2篇
  1966年   2篇
  1944年   2篇
排序方式: 共有351条查询结果,搜索用时 567 毫秒
11.
Pablos, Marta I., Russel J. Reiter, Jin-Ing Chuang, GenaroG. Ortiz, Juan M. Guerrero, Ewa Sewerynek, Maria T. Agapito, DanielaMelchiorri, Richard Lawrence, and Susan M. Deneke. Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen. J. Appl.Physiol. 83(2): 354-358, 1997.Hyperbaric oxygenexposure rapidly induces lipid peroxidation and cellular damage in avariety of organs. In this study, we demonstrate that the exposure ofrats to 4 atmospheres of 100% oxygen for 90 min is associated withincreased levels of lipid peroxidation products [malonaldehyde(MDA) and 4-hydroxyalkenals (4-HDA)] and withchanges in the activities of two antioxidative enzymes[glutathione peroxidase (GPX) and glutathione reductase (GR)], as well as in the glutathione status in the lungs and in the brain. Products of lipid peroxidation increased after hyperbaric hyperoxia, both GPX and GR activities were decreased, and levels oftotal glutathione (reduced+oxidized) and glutathione disulfide (oxidized glutathione) increased in both lung and brain areas (cerebralcortex, hippocampus, hypothalamus, striatum, and cerebellum) but not inliver. When animals were injected with melatonin (10 mg/kg) immediatelybefore the 90-min hyperbaric oxygen exposure, all measurements ofoxidative damage were prevented and were similar to those in untreatedcontrol animals. Melatonin's actions may be related to a variety ofmechanisms, some of which remain to be identified, including itsability to directly scavenge free radicals and its induction ofantioxidative enzymes via specific melatonin receptors.

  相似文献   
12.
The protective effect of melatonin on lipopolysaccharide (LPS)-induced oxidative damage in phenobarbital-treated rats was measured using the following parameters: changes in total glutathione (tGSH) concentration, levels of oxidized glutathione (GSSG), the activity of the antioxidant enzyme glutathione peroxidase (GSH-PX) in both brain and liver, and the content of cytochrome P450 reductase in liver. Melatonin was injected intraperitoneally (ip, 4mg/kg BW) every hour for 4 h after LPS administration; control animals received 4 injections of diluent. LPS was given (ip, 4 mg/kg) 6 h before the animals were killed. Prior to the LPS injection, animals were pretreated with phenobarbital (PB), a stimulator of cytochrome P450 reductase, at a dose 80 mg/kg BW ip for 3 consecutive days. One group of animals received LPS together with Nw-nitro-L-arginine methyl ester (L-NAME), a blocker of nitric oxide synthase (NOS) (for 4 days given in drinking water at a concentration of 50 mM). In liver, PB, in all groups, increased significantly both the concentration of tGSH and the activity of GSH-PX. When the animals were injected with LPS the levels of tGSH and GSSG were significantly higher compared with other groups while melatonin and L-NAME significantly enhanced tGSH when compared with that in the LPS-treated rats. Melatonin alone reduced GSSG levels and enhanced the activity of GSH-PX in LPS-treated animals. Additionally, LPS diminished the content of cytochrome P450 reductase with this effect being largely prevented by L-NAME administration. Melatonin did not change the content of P450 either in PB- or LPS-treated animals. In brain, melatonin and L-NAME increased both tGSH levels and the activity of GSH-PX in LPS-treated animals. The results suggest that melatonin protects against LPS-induced oxidative toxicity in PB-treated animals in both liver and brain, and the findings are consistent with previously published observations related to the antioxidant activity of the pineal hormone.  相似文献   
13.
Freeze cleaving electron microscopy has shown that fusion of isolated secretory vesicles from bovine neurohypophyses was induced by Ca2+ in micromolar concentrations. Mg2+ and Sr2+ were ineffective. Mg2+ inhibited Ca2+-induced fusion.In suspensions containing secretory vesicles as well as sheets of cell membrane, release of vasopressin parallel to intervesicular fusion of secretory vesicles with sheets of cell membrane was observed after exposure to Ca2+. Mg2+ and Sr2+ were ineffective in replacing Ca2+ as trigger for fusion or vasopressin release.Intervesicular fusion and exocytotic profiles were observed when isolated neurohypophyses or neurosecretosome were exposed to cold.  相似文献   
14.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   
15.
M Russel  P Model    A Holmgren 《Journal of bacteriology》1990,172(4):1923-1929
We have shown previously that Escherichia coli cells constructed to lack both thioredoxin and glutaredoxin are not viable unless they also acquire an additional mutation, which we called X. Here we show that X is a cysA mutation. Our data suggest that the inviability of a trxA grx double mutant is due to the accumulation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in the sulfate assimilation pathway. The presence of excess cystine at a concentration sufficient to repress the sulfate assimilation pathway obviates the need for an X mutation and prevents the lethality of a novel cys+ trxA grx double mutant designated strain A522. Mutations in genes required for PAPS synthesis (cysA or cysC) protect cells from the otherwise lethal effect of elimination of both thioredoxin and glutaredoxin even in the absence of excess cystine. Both thioredoxin and glutaredoxin have been shown to be hydrogen donors for PAPS reductase (cysH) in vitro (M. L.-S. Tsang, J. Bacteriol. 146:1059-1066, 1981), and one or the other of these compounds is presumably essential in vivo for growth on minimal medium containing sulfate as the sulfur source. The cells which lack both thioredoxin and glutaredoxin require cystine or glutathione for growth on minimal medium but maintain an active ribonucleotide reduction system. Thus, E. coli must contain a third hydrogen donor active with ribonucleotide reductase.  相似文献   
16.
Summary Fine structural features of pinealocytes of cotton rats (Sigmodon hispidus) were examined. Golgi complexes, mitochondria, endoplasmic reticulum and polysomes are usual organelles seen in the perikaryonal cytoplasm of pinealocytes. Many non-granulated vesicles (40 to 80 nm in diameter) and a few granulated vesicles (about 100 nm in diameter) are associated with the Golgi cisternae. Occasionally, the cisternae contain granular materials. The perikaryonal cytoplasm of pinealocytes is characterized by the presence of inclusion bodies. These bodies are usually round in shape, not bounded by a limiting membrane and composed of fine granular or filamentous materials of high electron-opacity, which are similar in appearance to the substance seen in the nucleolonema. Pinealocyte processes, filled with abundant non-granulated vesicles and some granulated vesicles, are mainly found within the parenchyma and occasionally in perivascular spaces.Supported in part by NSF grant no. PCM 77-05734 and NIH grant no. HD-10202 (Morphology Core)  相似文献   
17.
Young squirrel monkeys (Saimiri sciureus) were reported grooming an adult female uakari (Cacajao calvus rubicundus) on four different occasions. Furthermore, the uakari was noted grooming two squirrel monkeys in separate instances. These observations took place in a seminatural rainforest (The Monkey Jungle; Goulds, Florida, U.S.A.) where provisions are provided. Some possible hypostheses tendered to account for this unusual behavior included (a) the unaverted interaction of food-seeking and fur-cleaning behavior, and (b) the compatibility of play-curiosity activities by squirrel monkeys with the uakaris' need for social contact.  相似文献   
18.
19.
Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.  相似文献   
20.
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号