首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   190篇
  2022年   11篇
  2021年   23篇
  2020年   12篇
  2019年   20篇
  2018年   23篇
  2017年   13篇
  2016年   13篇
  2015年   35篇
  2014年   41篇
  2013年   57篇
  2012年   68篇
  2011年   81篇
  2010年   57篇
  2009年   46篇
  2008年   69篇
  2007年   54篇
  2006年   51篇
  2005年   57篇
  2004年   43篇
  2003年   59篇
  2002年   58篇
  2001年   46篇
  2000年   39篇
  1999年   27篇
  1998年   23篇
  1997年   10篇
  1996年   15篇
  1994年   13篇
  1992年   29篇
  1991年   29篇
  1990年   11篇
  1989年   22篇
  1988年   21篇
  1987年   30篇
  1986年   18篇
  1983年   14篇
  1982年   19篇
  1981年   13篇
  1980年   10篇
  1979年   11篇
  1978年   10篇
  1977年   13篇
  1975年   13篇
  1974年   10篇
  1973年   14篇
  1945年   11篇
  1939年   17篇
  1938年   12篇
  1937年   10篇
  1916年   10篇
排序方式: 共有1596条查询结果,搜索用时 15 毫秒
71.
72.
73.
Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain‐of‐activity mouse model presents with a premature aging‐like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75‐week‐old) female C57BL/6 mice with a Cdc42 activity‐specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN‐treated animals displayed a youthful level of the aging‐associated cytokines IL‐1β, IL‐1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.  相似文献   
74.
75.
76.
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams–Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.  相似文献   
77.
Abstract

A comparative study using immobilised DNA and PNA oligomers demonstrates the suitability of PNA molecules as sequence specific capture probes in the detection of single point mutations in a DNA analyte and in the analysis of complex analyte mixtures.  相似文献   
78.
79.
Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel familiesmSLAC/SLAH and ALMTmare known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al3+-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In con- trast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al3+- insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUACl-type currents in the plasma membrane of guard cells and QUACl-expressing oocytes revealing similar voltage dependencies and activation- deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increas- ing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains com- mon for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is con- served in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号