首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1404篇
  免费   189篇
  2021年   23篇
  2020年   12篇
  2019年   20篇
  2018年   23篇
  2017年   13篇
  2016年   13篇
  2015年   35篇
  2014年   41篇
  2013年   57篇
  2012年   68篇
  2011年   81篇
  2010年   57篇
  2009年   46篇
  2008年   69篇
  2007年   54篇
  2006年   51篇
  2005年   57篇
  2004年   43篇
  2003年   59篇
  2002年   58篇
  2001年   46篇
  2000年   39篇
  1999年   27篇
  1998年   23篇
  1997年   10篇
  1996年   15篇
  1994年   13篇
  1992年   29篇
  1991年   29篇
  1990年   11篇
  1989年   22篇
  1988年   21篇
  1987年   30篇
  1986年   18篇
  1983年   14篇
  1982年   19篇
  1981年   13篇
  1980年   10篇
  1979年   11篇
  1978年   10篇
  1977年   13篇
  1975年   13篇
  1974年   10篇
  1973年   14篇
  1945年   11篇
  1941年   9篇
  1939年   17篇
  1938年   12篇
  1937年   10篇
  1916年   10篇
排序方式: 共有1593条查询结果,搜索用时 781 毫秒
101.
Glutamate is the primary excitatory neurotransmitter in brain. By stimulating neuronal activity, glutamate increases cellular energy utilization, enhances ATP hydrolysis and promotes the formation of adenosine. Adenosine has receptor-mediated effects that reduce or oppose the excitatory effects of glutamate. As a possible mechanism for ethanol's ability to inhibit excitatory effects of glutamate and enhance inhibitory effects of adenosine, we tested the hypothesis that ethanol promotes [3H]glutamate uptake and inhibits [3H]adenosine uptake. Using primary cultures of rat astrocytes, we found that acute treatment with ethanol (50 mM, 30 min) inhibited [3H]glutamate uptake and reduced protein kinase C (PKC)-induced stimulation of [3H]glutamate uptake. Prolonged treatment (50 mM, 3 day) with ethanol, however, increased both [3H]glutamate uptake and PKC activity. Contrary to other cell types, neither acute or chronic ethanol exposure affected [3H]adenosine uptake in astrocytes. These data indicate that in rat cortical astrocytes ethanol affects [3H]glutamate uptake but not [3H]adenosine uptake by affecting PKC modulation of transporter activity.  相似文献   
102.
Acyl carrier protein (ACP) of Escherichia coli is a small acidic protein which functions as carrier of growing acyl chains during their biosynthesis and as donor of acyl chains during transfer to target molecules. This unique ACP of E. coli is expressed constitutively. In more complex bacteria, multiple ACPs are present, indicating a channeling of pools of multi-carbon units into different biosynthetic routes. In rhizobia, for example, besides the constitutive ACP (AcpP) involved in the biosynthesis and transfer of common fatty acids, three specialized ACPs have been reported: (1) the flavonoid-inducible nodulation protein NodF, (2) AcpXL that transfers 27-hydroxyoctacosanoic acid to a sugar backbone during lipid A biosynthesis, and (3) the RkpF protein which is required for the biosynthesis of rhizobial capsular polysaccharides. All three of those specialized rhizobial ACPs are required for the biosynthesis of cell-surface molecules that play a role in establishing the symbiotic relationship between rhizobia and their legume hosts. Surprisingly, the recently sequenced genomes from Mesorhizobium loti and Sinorhizobium meliloti suggest even more candidates for ACPs in rhizobia.  相似文献   
103.
Angiogenesis inhibitors have gained much public attention recently as anti-cancer agents and several are currently in clinical trials, including angiostatin (Phase I, Thomas Jefferson University Hospital, Philadelphia, PA). We report here the bowl-shaped structure of angiostatin kringles 1-3, the first multi-kringle structure to be determined. All three kringle lysine-binding sites contain a bound bicine molecule of crystallization while the former of kringle 2 and kringle 3 are cofacial. Moreover, the separation of the kringle 2 and kringle 3 lysiner binding sites is sufficient to accommodate the alpha-helix of the 30 residue peptide VEK-30 found in the kringle 2/VEK-30 complex. Together the three kringles produce a central cavity suggestive of a unique domain where they may function in concert.  相似文献   
104.
105.
MOTIVATION: Gene expression experiments provide a fast and systematic way to identify disease markers relevant to clinical care. In this study, we address the problem of robust identification of differentially expressed genes from microarray data. Differentially expressed genes, or discriminator genes, are genes with significantly different expression in two user-defined groups of microarray experiments. We compare three model-free approaches: (1). nonparametric t-test, (2). Wilcoxon (or Mann-Whitney) rank sum test, and (3). a heuristic method based on high Pearson correlation to a perfectly differentiating gene ('ideal discriminator method'). We systematically assess the performance of each method based on simulated and biological data under varying noise levels and p-value cutoffs. RESULTS: All methods exhibit very low false positive rates and identify a large fraction of the differentially expressed genes in simulated data sets with noise level similar to that of actual data. Overall, the rank sum test appears most conservative, which may be advantageous when the computationally identified genes need to be tested biologically. However, if a more inclusive list of markers is desired, a higher p-value cutoff or the nonparametric t-test may be appropriate. When applied to data from lung tumor and lymphoma data sets, the methods identify biologically relevant differentially expressed genes that allow clear separation of groups in question. Thus the methods described and evaluated here provide a convenient and robust way to identify differentially expressed genes for further biological and clinical analysis.  相似文献   
106.
MOTIVATION: The information model chosen to store biological data affects the types of queries possible, database performance, and difficulty in updating that information model. Genetic sequence data for pharmacogenetics studies can be complex, and the best information model to use may change over time. As experimental and analytical methods change, and as biological knowledge advances, the data storage requirements and types of queries needed may also change. RESULTS: We developed a model for genetic sequence and polymorphism data, and used XML Schema to specify the elements and attributes required for this model. We implemented this model as an ontology in a frame-based representation and as a relational model in a database system. We collected genetic data from two pharmacogenetics resequencing studies, and formulated queries useful for analysing these data. We compared the ontology and relational models in terms of query complexity, performance, and difficulty in changing the information model. Our results demonstrate benefits of evolving the schema for storing pharmacogenetics data: ontologies perform well in early design stages as the information model changes rapidly and simplify query formulation, while relational models offer improved query speed once the information model and types of queries needed stabilize.  相似文献   
107.
The Arabidopsis phloem channel AKT3 is the founder of a subfamily of shaker-like plant potassium channels characterized by weak rectification, Ca(2+) block, proton inhibition, and, as shown in this study, K(+) sensitivity. In contrast to inward-rectifying, acid-activated K(+) channels of the KAT1 family, extracellular acidification decreases AKT3 currents at the macroscopic and single-channel levels. Here, we show that two distinct sites within the outer mouth of the K(+)-conducting pore provide the molecular basis for the pH sensitivity of this phloem channel. After generation of mutant channels and functional expression in Xenopus oocytes, we identified the His residue His-228, which is proximal to the K(+) selectivity filter (GYGD) and the distal Ser residue Ser-271, to be involved in proton susceptibility. Mutations of these sites, H228D and S271E, drastically reduced the H(+) and K(+) sensitivity of AKT3. Although in K(+)-free bath solutions outward K(+) currents were abolished completely in wild-type AKT3, S271E as well as the AKT3-HDSE double mutant still mediated K(+) efflux. We conclude that the pH- and K(+)-dependent properties of the AKT3 channel involve residues in the outer mouth of the pore. Both properties, H(+) and K(+) sensitivity, allow the fine-tuning of the phloem channel and thus seem to represent important elements in the control of membrane potential and sugar loading.  相似文献   
108.
Protein kinase B/Akt (PKB) is an anti-apoptotic protein kinase that has strongly elevated activity in human malignancies. We therefore initiated a program to develop PKB inhibitors, "Aktstatins". We screened about 500 compounds for PKB inhibitors, using a radioactive assay and an ELISA assay that we established for this purpose. These compounds were produced as combinatorial libraries, designed using the structure of the selective PKA inhibitor H-89 as a starting point. We have identified a successful lead compound, which inhibits PKB activity in vitro and in cells overexpressing active PKB. The new compound shows reversed selectivity to H-89: In contrast to H-89, which inhibits PKA 70 times better than PKB, the new compound, NL-71-101, inhibits PKB 2.4-fold better than PKA. The new compound, but not H-89, induces apoptosis in tumor cells in which PKB is amplified. We have identified structural features in NL-71-101 that are significant for the specificity and that can be used for future development and optimization of PKB inhibitors.  相似文献   
109.
110.
Experiments are described to determine the origin of the 6-hydroxyl group of 6-hydroxyFMN produced by the substrate-induced transformation of FMN in the C30A mutant of trimethylamine dehydrogenase. The conversion of FMN to 6-hydroxyFMN is carried out in the presence of H(2)(18)O and 18O(2), and the results clearly show that the 6-hydroxyl group is derived from molecular oxygen and not from water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号