首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   27篇
  216篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   7篇
  2014年   16篇
  2013年   9篇
  2012年   14篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   10篇
  2007年   12篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   4篇
  1973年   8篇
  1972年   1篇
  1971年   1篇
  1970年   11篇
  1969年   9篇
  1968年   1篇
  1967年   1篇
  1966年   5篇
  1965年   2篇
排序方式: 共有216条查询结果,搜索用时 0 毫秒
51.
52.
53.
Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets exposed to chronic hypoxia (CH) developed PAH by 21 days, which was evident as a 2.1-fold increase in pulmonary vascular resistance in vivo compared with piglets raised in normoxia (N). Transpulmonary pressures (DeltaPtp) in the corresponding isolated perfused lungs were 20.5 +/- 2.1 mmHg (CH) and 11.6 +/- 0.8 mmHg (N). Nifedipine reduced the elevated DeltaPtp in isolated lungs of CH piglets by 6.4 +/- 1.3 mmHg but only reduced DeltaPtp in lungs of N piglets by 1.9 +/- 0.2 mmHg. Small pulmonary arteries from CH piglets also demonstrated accentuated Ca(2+)-dependent contraction, and Ca(2+) channel current was 3.94-fold higher in the resident vascular muscle cells. Finally, although the level of mRNA encoding the pore-forming alpha(1C)-subunit of the Ca(L) channel was similar between small pulmonary arteries from N and CH piglets, a profound and persistent upregulation of the vascular alpha(1C) protein was detected by 10 days in CH piglets at a time when pulmonary vascular resistance was only mildly elevated. Thus chronic hypoxia in the neonate is associated with the anomalous upregulation of Ca(L) channels in small pulmonary arteries in vivo and the resulting abnormal Ca(2+)-dependent resistance may contribute to the pathogenesis of PAH.  相似文献   
54.
The biological rhythms of microalgal growth within a hydraulically integrated serial turbidostat algal reactor (HISTAR) were examined after comparison of a simple mechanistic productivity model with actual data yielded a standard error of prediction (SEP) of 62%. The data used for this study were taken on cultures of Selenastrum capricornutum grown under continuous 400-watt metal halide lighting. Fourier series analysis (up to five harmonics) was used to model the biorhythms and differentiate them from stochastic processes. Regression analyses revealed that the best Fourier series fit for the data was a three harmonic summation. Regression analyses on additional harmonic summations did not increase r 2 by more than 1%. The three harmonics were summed and incorporated into the growth term of the simple model, and the resultant full model was calibrated. The mechanistic HISTAR productivity model was greatly enhanced by the addition of the biological rhythm component, resulting in a SEP of <24.8 %. The period of the first harmonic was 13.4 days, which is very close to a circasemilunar rhythm (14.8 days). In summary, the predictive power of productivity models for continuous microalgal cultures can be dramatically improved with the inclusion of a biorhythm analysis.  相似文献   
55.
Mutations in human Exostosin genes (EXTs) confer a disease called Hereditary Multiple Exostoses (HME) that affects 1 in 50,000 among the general population. Patients with HME have a short stature and develop osteochondromas during childhood. Here we show that two zebrafish mutants, dackel (dak) and pinscher (pic), have cartilage defects that strongly resemble those seen in HME patients. We have previously determined that dak encodes zebrafish Ext2. Positional cloning of pic reveals that it encodes a sulphate transporter required for sulphation of glycans (Papst1). We show that although both dak and pic are required during cartilage morphogenesis, they are dispensable for chondrocyte and perichondral cell differentiation. They are also required for hypertrophic chondrocyte differentiation and osteoblast differentiation. Transplantation analysis indicates that dak(-/-) cells are usually rescued by neighbouring wild-type chondrocytes. In contrast, pic(-/-) chondrocytes always act autonomously and can disrupt the morphology of neighbouring wild-type cells. These findings lead to the development of a new model to explain the aetiology of HME.  相似文献   
56.
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmdmdx mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca2+ influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome—autophagy—and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.  相似文献   
57.
58.
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.  相似文献   
59.
Recent interest in the use of microalgae for the production of biofuels and bioproducts has stimulated an interest in methods to enhance the growth rate of microalgae. This review examines past work involving the stimulation of Chlorella sp. growth and metabolite production by plant growth substances as well as by mixed cultures of Chlorella sp. with bacteria. Plant growth substances known to regulate Chlorella sp. growth and metabolite production include auxins, cytokinins, abscisic acid, polyamines, brassinosteroids, jasmonic acid, salicylic acid, and combinations of two or three of the aforementioned substances. Mixed cultures of bacteria are examined, including both natural bacteria–algae consortia and artificially induced symbioses. For natural consortia, commonly occurring bacterial species, including the genera Brevundimonas and Sphingomonas, are discussed. For artificially induced symbioses, the use of the nitrogen-fixing bacterium Azospirillum is examined in detail. In particular, a variety of studies have involved the coimmobilization of Chlorella sp. with Azospirillum sp. in alginate beads, with the goal of using the mixed culture to treat wastewater. In summary, the use of plant growth substances and mixed cultures provides two methods to increase the growth of Chlorella sp., whether for the production of lipids for biofuels, the production of bioproducts, the treatment of wastewater, or a variety of other reasons.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号