首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   30篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   16篇
  2013年   21篇
  2012年   15篇
  2011年   14篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   3篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
51.
Spontaneous and induced chromosomal instability in Werner syndrome   总被引:4,自引:0,他引:4  
Summary In extension of a previous study, spontaneous and clastogen-induced chromosome damage was analyzed in cultures of peripheral blood lymphocytes from six further patients with Werner syndrome (WS) and six healthy controls. In addition, sister chromatid exchange (SCE) was estimated in four of these cases. Lymphocytes of patients with various other diseases were used for another series of control experiments. Diepoxybutane (DEB), 4-nitroquinoline-1-oxide (NQO), and bleomycin (BLM) were the standard clastogens throughout the study. While the spontaneous frequency of chromosomal breakage was significantly higher in lymphocytes from all the patients than in the control cells, the basis SCE rate was un-affected in WS cells. Sensitivity of WS cells to the chromosome-damaging action of BLM did not differ from that of control cells, and their sensitivity to DEB was slightly greater than that of control lymphocytes. However, NQO induced a more distinct increase of both break and interchange aberrations in the WS cells than in control cells or cells from patients with other diseases. This effect was not found for the SCE rate. Our data demonstrate the exceptional cytogenetic features of this syndrome: Although the spontaneous and the DEB- and NQO-induced chromosomal breakage rate would suggest that WS is like a classic chromosomal instability syndromes, the lack of sensitivity of WS cells to bleomycin and their stable SCE frequency compared with that of control cells clearly delimitate this syndrome from other entities.  相似文献   
52.
53.
54.
Bovine rhodopsin photointermediates formed in two-dimensional (2D) rhodopsin crystal suspensions were studied by measuring the time-dependent absorbance changes produced after excitation with 7 ns laser pulses at 15, 25, and 35 degrees C. The crystalline environment favored the Meta I(480) photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 degrees C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I(480) decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 degrees C and quenched to 19 degrees C showed that a rapid equilibrium existed on the approximately 1 s time scale, which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MII(a)) forms in 2D rhodopsin crystals but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest.  相似文献   
55.
Three new structures of Escherichia coli succinate-quinone oxidoreductase (SQR) have been solved. One with the specific quinone-binding site (Q-site) inhibitor carboxin present has been solved at 2.4 Å resolution and reveals how carboxin inhibits the Q-site. The other new structures are with the Q-site inhibitor pentachlorophenol and with an empty Q-site. These structures reveal important details unresolved in earlier structures. Comparison of the new SQR structures shows how subtle rearrangements of the quinone-binding site accommodate the different inhibitors. The position of conserved water molecules near the quinone binding pocket leads to a reassessment of possible water-mediated proton uptake networks that complete reduction of ubiquinone. The dicarboxylate-binding site in the soluble domain of SQR is highly similar to that seen in high resolution structures of avian SQR (PDB 2H88) and soluble flavocytochrome c (PDB 1QJD) showing mechanistically significant structural features conserved across prokaryotic and eukaryotic SQRs.Succinate:quinone oxidoreductase (SQR,4 succinate dehydrogenase) and menaquinol:fumarate oxidoreductase (QFR, fumarate reductase), members of the Complex II family, are homologous integral membrane proteins which couple the interconversion of succinate and fumarate with quinone and quinol (14). SQR is a key enzyme in the Krebs cycle, oxidizing succinate to fumarate during aerobic growth and reducing quinone to quinol and, thus, acts as a direct link between the Krebs cycle and the respiratory chain. QFR is found in anaerobic or facultative bacteria and lower eukaryotes, where it couples the oxidation of reduced quinones to the reduction of fumarate (1, 4). Escherichia coli SQR has four subunits, two hydrophilic subunits exposed to the cytoplasm (SdhA and SdhB), which interact with two hydrophobic membrane-intrinsic subunits (SdhC and SdhD) (5). SdhA contains the dicarboxylate-binding site and a covalently bound FAD cofactor which cycles between FAD and FADH2 redox states during succinate oxidation (6). The electrons from succinate oxidation are sequentially transferred via a [2Fe-2S], a [4Fe-4S], and a [3Fe-4S] iron-sulfur cluster relay system in SdhB to a quinone-binding site (QP) located at the interface of the SdhB, SdhC, and SdhD subunits. SdhC and SdhD are both composed of three transmembrane helices and coordinate a low spin b-type heme via His residues contributed by each subunit (7, 8).The first structural information about members of the Complex II family came from x-ray structures of the QFR enzymes from E. coli at 3.3 Å resolution (9) and Wolinella succinogenes at 2.2 Å resolution (10). These structures revealed details of the overall architecture of the subunits, the position of key redox cofactors, the electron transfer pathway, and the quinone-binding sites. At around the same time, the structures of soluble fumarate reductases found in anaerobic and microaerophilic bacteria and structurally homologous to the flavoprotein subunit of Complex II were solved by x-ray crystallography (1). Analysis of these soluble fumarate reductases has proven particularly informative in describing the mechanism of fumarate reduction and succinate oxidation at the dicarboxylate-binding site (1114).Structures of SQRs lagged behind those of the QFRs until the structure of the E. coli enzyme was solved at 2.6 Å (15). This structure, solved in space group R32, revealed that the E. coli enzyme is packed as a trimer. The structures of the SdhA and SdhB subunits were highly similar to those of E. coli and W. succinogenes QFRs, but the transmembrane SdhC and SdhD subunits showed differences compared with their QFR counterparts. The structure revealed the position of the redox sites and the dicarboxylate- and quinone-binding (Q) sites. The heme b molecule was shown to lie away from the electron transfer pathway, suggesting electrons are preferentially transferred from the [3Fe-4S] cluster to ubiquinone, on the grounds of the edge-to-edge distances and redox potentials of the relevant groups. The structure revealed density in the Q-site that was interpreted as ubiquinone, and the position of the binding site was confirmed by the structure of the E. coli enzyme co-crystallized with the Q-site inhibitor 2-(1-methyl-hexyl)-4,6-dinitrophenol (DNP-17, PDB code 1NEN (15)). The E. coli enzyme was subsequently co-crystallized with the Q-site inhibitor Atpenin A5 (AA5) (PDB code 2ACZ (16)). This inhibitor was bound deeper into the quinone-binding site than ubiquinone or DNP-17, suggesting that there are two binding positions for ubiquinone in its binding site. The structure also identified a water-mediated proton pathway, proposed to deliver protons to the quinone-binding site. The first structure of a mitochondrial SQR was from porcine heart at 2.4 Å resolution (PDB code 1ZOY (17). This structure revealed a monomer in the asymmetric unit, suggesting that mitochondrial SQRs were likely to function as monomers. Superposition of the porcine and E. coli SQR structures revealed the high structural similarity of the SdhA and SdhB subunits and the conservation in position of the redox cofactors. Larger divergences were observed in the transmembrane subunits.Further structural information about SQRs was obtained by analysis of structures of avian SQR crystallized with oxaloacetate (2.2 Å resolution, PDB code 1YQ3), with 3-nitropropionate (2.4 Å resolution, PDB code 1YQ4), and with the Q-site inhibitor carboxin (2.1 Å resolution, PDB code 2FBW) (18). These structures revealed important differences in the position of key residues in the dicarboxylate-binding site compared with the E. coli and porcine structures. Arg-297 (equivalent to Arg-298 in porcine and Arg-286 in E. coli SQRs) was ideally located to act as a general base catalyst, accepting a proton during dehydrogenation of succinate, as in the soluble Shewanella flavocytochrome c3 (PDB code 1QJD) (11), suggesting conservation of mechanism between these distantly related enzymes. An unusual cis-serine peptide bond was proposed to position another arginine residue for binding dicarboxylates. Density for the dicarboxylate in 1YQ3 and 2FBW was shown to be distinctly non-planar and could be modeled by the “malate-like intermediate” seen in 1QJD. The nature of the ligand in the dicarboxylate site was further analyzed in a 1.74 Å resolution structure of avian SQR (PDB code 2H88), confirming the high structural similarity of the ligand and binding site residues in the SQR and flavocytochrome c3 structures (11, 12, 14).Despite the structural information described above, there are still unresolved issues regarding the structure and function of SQRs and QFRs. These include the location of conserved waters, which may form a channel involved in protonation of quinone, and the ability of the Q-site to accommodate different quinones and inhibitors. To further address these issues, we pursued structure-function studies of E. coli SQR. We developed alternative crystallization conditions that provided crystals more reproducibly and diffracting to higher resolution. By exchanging the enzyme into decyl-β-d-maltoside (DM) during purification, it was possible to crystallize the enzyme in the orthorhombic P212121 space group. These crystals routinely diffracted in the 3–3.5 Å resolution range. Co-crystallization with the biochemically well characterized Q-site inhibitor carboxin improved diffraction to 2.1–2.8 Å. This structure shows new features related to the dicarboxylate-binding site of E. coli SQR including a rare cis-peptide bond in SdhA, as found in avian SQR (14), which helps shape the geometry of the active site. Comparisons of the structure with those of SQR binding PCP and SQR with an empty Q-site show how subtle rearrangements of the Q-site accommodate the different inhibitors. The orientation of carboxin in the Q-site differs with computational predictions (16) and with that seen in avian SQR (2FBW). The position of conserved water molecules around the Q-site suggests a new water-mediated proton uptake pathway consistent with recent mutational and biophysical studies (19).  相似文献   
56.
Natural forest reserves provide a rare opportunity to study forest dynamics after the cessation of human management. Inventories were carried out in 1996 and 2006 in an oak (Quercus spp.) dominated forest reserve formerly managed as coppice forest using the Bitterlich sampling method, an inventory method with a fixed angle of sight to select trees based on their stem diameter. The total living stand volume increased from 245.2 to 276.5 m3/ha (+12.8%) over the 10-year period. This net increase resulted from the growth of individual trees (+3.7%), the ingrowths of young trees (+17.7%) and tree mortality between 1996 and 2006 (−8.6%). Tree mortality included 14.8 m3/ha of standing deadwood and 6.2 m3/ha of fallen deadwood. Stand dynamics differed among tree species: the volume of oak (Quercus spp.) increased due to strong growth and low mortality, whereas hornbeam (Carpinus betulus) showed a decrease in stand volume due to high mortality and low growth. The findings suggest an increase in oak dominance at the expense of hornbeam although inventories repeated over longer time periods would be needed for confirmation. Our data indicate that the Bitterlich sampling method can be used for assessing tree species dynamics and structural changes in natural forest reserves, but some important processes (seedling recruitment, wood decomposition) would need to be investigated separately.
Zusammenfassung  In einem von Eiche (Quercus spp.) dominierten Naturwaldreservat wurde in den Jahren 1996 und 2006 auf einer Fl?che von 29 ha eine Inventur mittels der Winkelz?hlprobe nach Bitterlich durchgeführt. Der Gesamtvorrat erh?hte sich in der 10-j?hrigen Beobachtungsperiode von 245.2 m3/ha auf 276.5 m3/ha. Im Durchschnitt konnten 14.8 m3/ha stehendes Totholz und 6.2 m3/ha liegendes Totholz ermittelt werden. Die Mortalit?tsrate lag zwischen 1996 und 2006 bei 8.6%. Hainbuche (Carpinus betulus) zeigte aufgrund der hohen Mortalit?t und dem geringen Einwuchs im Vergleich zur Eiche und den anderen Baumarten eine Abnahme im Gesamtvorrat. Die Ergebnisse erlauben einen Einblick in die dynamischen Prozesse unter nahezu natürlichen Bedingungen. Die Eignung der Winkelz?hlprobe für die Beurteilung der Dynamik und die Analyse von strukturellen Ver?nderungen wird kritisch diskutiert.
  相似文献   
57.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs) are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker, hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of 89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS.  相似文献   
58.
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.  相似文献   
59.

Background

Changing lifestyles have recently caused a severe reduction of the gathering of wild food plants. Knowledge about wild food plants and the local environment becomes lost when plants are no longer gathered. In Central Europe popular scientific publications have tried to counter this trend. However, detailed and systematic scientific investigations in distinct regions are needed to understand and preserve wild food uses. This study aims to contribute to these investigations.

Methods

Research was conducted in the hill country east of Graz, Styria, in Austria. Fifteen farmers, most using organic methods, were interviewed in two distinct field research periods between July and November 2008. Data gathering was realized through freelisting and subsequent semi-structured interviews. The culinary use value (CUV) was developed to quantify the culinary importance of plant species. Hierarchical cluster analysis was performed on gathering and use variables to identify culture-specific logical entities of plants. The study presented was conducted within the framework of the master's thesis about wild plant gathering of the first author. Solely data on gathered wild food species is presented here.

Results

Thirty-nine wild food plant and mushroom species were identified as being gathered, whereas 11 species were mentioned by at least 40 percent of the respondents. Fruits and mushrooms are listed frequently, while wild leafy vegetables are gathered rarely. Wild foods are mainly eaten boiled, fried or raw. Three main clusters of wild gathered food species were identified: leaves (used in salads and soups), mushrooms (used in diverse ways) and fruits (eaten raw, with milk (products) or as a jam).

Conclusions

Knowledge about gathering and use of some wild food species is common among farmers in the hill country east of Graz. However, most uses are known by few farmers only. The CUV facilitates the evaluation of the culinary importance of species and makes comparisons between regions and over time possible. The classification following gathering and use variables can be used to better understand how people classify the elements of their environment. The findings of this study add to discussions about food heritage, popularized by organizations like Slow Food, and bear significant potential for organic farmers.  相似文献   
60.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号