首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   4篇
  国内免费   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1982年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
61.
Summary Chromosomal aberrations, sister chromatid exchanges, mitotic index and cell kinetics were observed in human peripheral lymphocytes after treatment with four different concentrations (0.0125, 0.025, 0.05 and 0.1 g/ml) of benzene hexachloride (BHC), an organochlorine pesticide. Cells were treated with BHC for 24, 48 and 72h. There was a dose-dependent increase in the frequency of chromosomal aberrations and sister chromatid exchanges. A significant decrease in mitotic index was observed at all concentrations and times of exposure. BHC did not show a significant effect on cell kinetics.  相似文献   
62.
Crop Evolution,Adaptation and Yield   总被引:1,自引:0,他引:1  
NÁTR  L. 《Photosynthetica》1998,34(1):56-56
  相似文献   
63.
64.
Aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2′′)-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2′′)-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2′′) family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2′′)-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (Rfree, 0.271) at a resolution of 2.5 Å. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2′′)-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2′′) subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides.The emergence of bacteria resistant to several important classes of antibiotics has become a major clinical problem over the last few years. Almost every antibacterial compound in clinical use today has associated examples of resistant bacterial isolates (39), including life-threatening strains of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and various enterococci. The latter are among the most common antibiotic-resistance bacteria isolated from patients with nosocomial infections in the United States today. The synergistic use of either ampicillin or vancomycin with an aminoglycoside, such as kanamycin or gentamicin, has long been the optimal therapy for serious enterococcal infections; however, many previously susceptible enterococcal strains have since acquired resistance to the aminoglycosides. The mechanisms of resistance are many and varied, although only three are readily understood: (i) mutation of the ribosomal target, (ii) reduced permeability and/or increased efflux of the drug, and (iii) enzymatic deactivation of the drug. Resistance to the aminoglycosides through enzymatic deactivation, although seemingly straightforward, is in reality a complex problem involving three different classes of enzyme. These enzyme classes are the ATP-dependent phosphotransferases (APH) and adenyltransferases (ANT), and the acetyl coenzyme A-dependent N-acetyltransferases (AAC). This area of research has been extensively reviewed in the past few years (2, 4, 13, 29, 39, 47, 52, 53).Originally isolated from soil bacteria, including various species of Streptomyces and Micromonospora (20), the aminoglycosides are a family of potent, broad-spectrum antibiotics that includes clinically relevant drugs such as gentamicin, neomycin, amikacin, kanamycin, and streptomycin. The structures of these compounds, with the exception of that of streptomycin, are all similar, consisting of a central aminocyclitol ring (the B ring) with two or three substituted aminoglycan rings (A, C, and in some cases, D) attached at either the 4 and 5 positions (the 4,5-disubstituted aminoglycosides, which include neomycin and lividomycin) or the 4 and 6 positions (the 4,6-disubstituted aminoglycosides, such as gentamicin and kanamycin). Streptomycin, a competitive inhibitor of aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] (45), is an atypical aminoglycoside that does not fall into either the 4,5-disubstituted or 4,6-disubstituted classes. It has a modified ribose (ring B) attached to position 4 on a 1,3-diguanidinium-substituted aminocyclitol ring (ring A) with no substituent at the 5 or 6 position. The structures of gentamicin, kanamycin, neomycin, and streptomycin are shown in Fig. Fig.1.1. The aminoglycosides are targeted to the 16S rRNA of the bacterial 30S ribosomal subunit, where they selectively bind to the decoding aminoacyl (A) site (31, 51) and stabilize the conformation of the tRNA bound to a cognate mRNA codon. This decreases the dissociation rate of aminoacyl-tRNA and promotes miscoding (28). The structures of a number of the aminoglycosides with either the 30S subunit or oligonucleotides containing minimal A sites are known (51).Open in a separate windowFIG. 1.Structures of gentamicin, kanamycin, streptomycin, and neomycin. Gentamicin and kanamycin are classified as 4,6-disubstituted aminoglycosides, whereas neomycin is an example of a 4,5-disubstituted compound. The three structural variants which comprise gentamicin C are indicated. Amikacin is similar to kanamycin, although the substituent on the N1 amine is a 4-amino-2-hydroxy-1-oxobutyl group. Taken together, the A and B rings of aminoglycosides, such as gentamicin, kanamycin, and neomycin, are commonly known as the neamine moiety.The enzymes which deactivate the aminoglycosides are named according to the reaction they catalyze and the site on the aminoglycoside at which they act. The APH(2′′) enzymes, which give rise to high-level resistance to gentamicin in enterococci, phosphorylate gentamicin and kanamycin at the 2′′-hydroxyl group of the C ring (Fig. (Fig.1).1). The APH(3′) enzymes, another major subfamily of the phosphotransferases, phosphorylate kanamycin and neomycin at the 3′-hydroxyl on the A ring but cannot deactivate gentamicin, since it has no corresponding 3′-hydroxyl. The individual members of each family can normally bind only a subset of the available drugs, and this difference in drug specificity is known as the resistance profile, designated with a roman numeral and, in some cases, a letter identifying a specific gene. The first APH(2′′) enzyme discovered for enterococci was the bifunctional AAC(6′)-Ie-APH(2′′)-Ia enzyme, which possesses both 6′-acetylating and 2′′-phosphorylating activities (17, 33). Enterococci with the corresponding gene show resistance to almost all clinically relevant aminoglycosides (38). Four additional APH(2′′) enzymes have since been isolated for Enterococcus spp.; they are designated APH(2′′)-Ib (27), APH(2′′)-Ic (11), APH(2′′)-Id (46), and APH(2′′)-Ie (10) and were initially classified as genetic variants of an APH(2′′)-I-type enzyme. Recently, APH(2′′)-Ib, APH(2′′)-Ic, and APH(2′′)-Id have been reclassified as distinct enzymes with different resistance profiles and, more importantly, different nucleotide specificities, such that they are now named APH(2′′)-IIa, APH(2′′)-IIIa, and APH(2′′)-IVa, respectively (44). APH(2′′)-Ie was not included in the latter study, but based upon the very high sequence similarity with APH(2′′)-IVa (93%) (see Table S1 in the supplemental material), it is possible that it is a genetic variant of APH(2′′)-IVa.Structural details are currently known for only two members of the APH(3′) family, APH(3′)-IIIa (5, 18, 23) and APH(3′)-IIa (37). These enzymes share a two-domain structure similar to the catalytic domains of the eukaryotic Ser/Thr and Tyr protein kinases. Moreover, the phosphotransferases and kinases share several important sequence motifs related to nucleotide binding and phosphoryl transfer, most notably the catalytic loop (HXDXXXXN) and the activation segment (GXIDXG), where X is any amino acid. Not surprisingly, the catalytic mechanisms of the phosphotransferases and the kinases are identical, involving the nucleophilic attack by the target hydroxyl on the γ phosphate of ATP, facilitated by a conserved aspartate residue from the catalytic loop (29, 54). A comparison of the known APH(2′′) and APH(3′) sequences shows that the two families of phosphotransferases share these kinase-like motifs, and there appears to be some partial conservation of acidic residues in the substrate binding region. It has been suggested that their structures may be similar (37). Here, we report the first structure of an APH(2′′) enzyme, APH(2′′)-IIa as the binary complex with the preferred substrate gentamicin and the ternary complex with the nonhydrolyzable ATP analog adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and the competitive inhibitor streptomycin.  相似文献   
65.
IgE-mediated allergic reactions to egg white are a serious health problem and ovomucoid being the dominant egg white allergen has been on focus in the past decade. Engineered hypoallergens with reduced reactivity for IgE antibodies are being examined to modulate the allergic response and develop prophylactic allergen vaccines. In this study, we evaluated the immunomodulatory effect of a genetic variant of the third domain of ovomucoid (GMFA) which showed reduced IgE binding with egg allergic patient's sera in comparison to the native form of the third domain of ovomucoid (DIII) in a murine model system. Balb/c mice were injected intraperitoneally with DIII and GMFA antigens. Allergen-specific serum IgG, IgG1, IgG2a, and IgE responses were evaluated using enzyme-linked immunosorbent assay. Splenocyte cytokine levels in the medium of the cultured cells were examined by ELISA and levels of IL-4, INF-gamma, and IL-12 (p70) cytokines were quantified. Neutralization with anti-IL-12 monoclonal antibody was assayed and cytokine levels with respect to GMFA mutant antigen stimulation were measured. GMFA mutant form was found to have significantly reduced levels of specific IgE when compared to the DIII suggesting a mutation-induced abrogation of the IgE binding epitope in mice. The increase in IgG2a levels in GMFA together with the decline of IgE and IgG1 points to a shift from a Th2 response to a Th1 dominated response. The cytokine profile showed a modulation of anti-allergic Th1 phenotype in GMFA from a proallergic Th2 response observed with DIII. Low levels of IL-4 and increased levels of INF-gamma and IL-12 were observed and anti-IL-12 monoclonal antibody restored the levels of IL-4 and suppressed levels of INF-gamma and IL-12 in the GMFA sensitized group. These results indicate that GMFA has a marked suppressive effect on the allergic response of ovomucoid and caused a shift towards a Th1 pathway, thereby modulating the Th1/Th2 cytokine balance and could be used as a potential hypoallergenic candidate for allergen-immunotherapy in the treatment of egg white allergy.  相似文献   
66.
67.
Discovery of a new class of DFG-out p38α kinase inhibitors with no hinge interaction is described. A computationally assisted, virtual fragment-based drug design (vFBDD) platform was utilized to identify novel non-aromatic fragments which make productive hydrogen bond interactions with Arg 70 on the αC-helix. Molecules incorporating these fragments were found to be potent inhibitors of p38 kinase. X-ray co-crystal structures confirmed the predicted binding modes. A lead compound was identified as a potent (p38α IC(50)=22 nM) and highly selective (≥ 150-fold against 150 kinase panel) DFG-out p38 kinase inhibitor.  相似文献   
68.

Background

Over 133,000 children present to hospitals with Acute Encephalitis Syndrome (AES) annually in Asia. Japanese encephalitis (JE) accounts for approximately one-quarter of cases; in most cases no pathogen is identified and management is supportive. Although JE is known to result in neurological impairment, few studies have examined the wider impact of JE and AES on patients and their families.

Methodology/Principal Findings

Children (aged 1 month–14 years) with AES were assessed 5–12 months after discharge from two Nepali hospitals. Assessment included clinical examination, the Liverpool Outcome Score (LOS) - a validated assessment of function following encephalitis, questionnaires about the child''s social participation since discharge, and out-of-pocket costs to the family. Children were classified as JE or ‘other AES’ based on anti-JE virus antibody titres during acute illness. Contact was made with the families of 76% (73/96) of AES children. Six children had died and one declined participation. 48% (32/66) reported functional impairment at follow-up, most frequently affecting behaviour, language or limb use. Impairment was more frequent in JE compared to ‘other AES’ cases (68% [13/19] versus 40% [19/47]; p = 0.06). 49% (26/53) had improvement in LOS between discharge and follow-up. The median out-of-pocket cost to families, including medical bills, medication and lost earnings was US$ 1151 (10 times their median monthly income) for children with severe/moderate impairment and $524 (4.6 times their income) for those with mild/no impairment (P = 0.007). Acute admission accounted for 74% of costs. Social participation was limited in 21% of children (n = 14).

Conclusions/Significance

Prolonged functional impairment was common following AES. Economic impact to families was substantial. Encouragingly, almost half the children improved after discharge and most reported sustained social participation. This study highlights a need for long-term medical support following AES. Rationalisation of initial expensive hospital treatments may be warranted, especially since only supportive treatment is available.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号