首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   83篇
  国内免费   63篇
  1136篇
  2024年   3篇
  2023年   18篇
  2022年   33篇
  2021年   76篇
  2020年   37篇
  2019年   50篇
  2018年   46篇
  2017年   35篇
  2016年   44篇
  2015年   64篇
  2014年   76篇
  2013年   70篇
  2012年   105篇
  2011年   93篇
  2010年   45篇
  2009年   37篇
  2008年   51篇
  2007年   39篇
  2006年   33篇
  2005年   26篇
  2004年   29篇
  2003年   22篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1136条查询结果,搜索用时 15 毫秒
21.
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.  相似文献   
22.
Zhu X  Wang L  Zhang B  Li J  Dou X  Zhao RC 《Journal of biochemistry》2011,149(4):405-414
Overwhelming evidence from chronic myeloid leukaemia (CML) research indicates that patients harbour quiescent CML stem cells that are responsible for blast crisis. While the haematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated. We have previously isolated fetal liver kinase-1-positive (Flk1(+)) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph(+)) patients with hemangioblast property. Here, we show that these cells behave abnormally comparing with the hemangioblasts in healthy donors. These Ph(+) putative CML hemangioblast up-regulated TGF-β1 and result in activating matrix metalloproteinase-9 to enhance s-KitL and s-ICAM-1 secretion. Further studies showed that phosphatidylinositol-3 kinase (PI3K)/Akt/nuclear factor-κB signalling pathway was involved in CML pathogenesis. These findings provide direct evidence for the first time that hemangioblasts beyond HSCs play a critical role in the progression of CML.  相似文献   
23.
Effector proteins secreted by oomycete and fungal pathogens have been inferred to enter host cells, where they interact with host resistance gene products. Using the effector protein Avr1b of Phytophthora sojae, an oomycete pathogen of soybean (Glycine max), we show that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protein into plant cells. Particle bombardment experiments demonstrate that these motifs function in the absence of the pathogen, indicating that no additional pathogen-encoded machinery is required for effector protein entry into host cells. Furthermore, fusion of the Avr1b RXLR-dEER domain to green fluorescent protein (GFP) allows GFP to enter soybean root cells autonomously. The conclusion that RXLR and dEER serve to transduce oomycete effectors into host cells indicates that the >370 RXLR-dEER-containing proteins encoded in the genome sequence of P. sojae are candidate effectors. We further show that the RXLR and dEER motifs can be replaced by the closely related erythrocyte targeting signals found in effector proteins of Plasmodium, the protozoan that causes malaria in humans. Mutational analysis of the RXLR motif shows that the required residues are very similar in the motifs of Plasmodium and Phytophthora. Thus, the machinery of the hosts (soybean and human) targeted by the effectors may be very ancient.  相似文献   
24.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   
25.
Zhao QT  Yue SQ  Cui Z  Wang Q  Cui X  Zhai HH  Zhang LH  Dou KF 《Life sciences》2007,80(5):484-492
Angiogenesis plays a crucial role in tumor development and growth. The present study was carried out to investigate the potential involvement of the cyclooxygenase-2 (Cox-2) pathway in the regulation of angiogenesis in hepatocellular carcinoma (HCC). We inhibited Cox-2 expression in HCC cell line HuH-7 by selective Cox-2 inhibitor (SC-58635) or Cox-2 siRNA. Conditioned media (CMs) from HuH-7 cells were used in angiogenic assays in vitro and in vivo. Compared with CMs from untreated and negative siRNA treated HuH-7 cells, CMs from SC-58635 and Cox-2 siRNA treated HuH-7 dramatically suppressed the proliferation, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) in vitro and neovascularization in vivo. These inhibitory effects could be partially reversed by the addition of exogenous PGE2 to CMs. Furthermore, Cox-2 inhibition by SC-58635 resulted in PGE2 reduction accompanied by the down-regulation of four PGE2 receptor (EP receptor) subtypes. Treatment with SC-58635 led to the down-expression of proangiogenic factors such as VEGF, HGF, FGF2, ANGPT1 and ANGPT2 in HCC. An approximately 78% reduction of VEGF level has been found in the CM from SC-58635 treated HuH-7. Our results suggest an involvement of Cox-2 in the control of HCC-associated angiogenesis. PGE2 as a vital angiogenic factor may act directly on endothelial cells to promote HuH-7-stimulated angiogenic process. Moreover, Cox-2/PGE2/EP/VEGF pathway possibly also contributes to tumor angiogenesis in HCC. This study provides the rationale for clinical studies of Cox-2 inhibitors on the treatment or chemoprevention of HCC.  相似文献   
26.
Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest‐dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome‐wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long‐tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes—either independently or together—are adaptive.  相似文献   
27.

Background

We present the first comprehensive analysis of Mycobacterium tuberculosis (MTB) isolates circulating in southern Taiwan. In this 9-year population-based study, the TB situation in the Kaohsiung region was characterized by genotypic analysis of 421 MTB isolates.

Methods

All 421 isolates of MTB were analyzed by spoligotyping and MIRU-VNTR typing. Drug-resistance patterns were also analyzed.

Results

The percentage of EAI (East African-Indian) strains increased across sampling years (2000–2008) in southern Taiwan, whereas the proportion of Beijing lineages remained unchanged. Clustering was more frequent with EAI genotype infections (odds ratio = 3.6, p<0.0001) when compared to Beijing genotypes. Notably, MTB resistance to streptomycin (STR) had significantly increased over time, but resistance to other antibiotics, including multidrug resistance, had not. Three major genes (gidB, rpsL and rrs) implicated in STR resistance were sequenced and specific mutations identified.

Conclusions

This study revealed that EAI strains were highly transmissible and that STR resistance has increased between 2000 and 2008 in Kaohsiung, Taiwan.  相似文献   
28.
We have previously demonstrated that halofuginone, a low molecular weight quinazolinone alkaloid, is a potent inhibitor of collagen alpha1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also effectively suppresses tumor progression and metastasis in mice. These results together with the well-documented role of extracellular matrix (ECM) components and matrix degrading enzymes in formation of new blood vessels led us to investigate the effect of halofuginone on the angiogenic process. In a variety of experimental system, representing sequential events in the angiogenic cascade, halofuginone treatment resulted in profound inhibitory effect. Among these are the abrogation of endothelial cell MMP-2 expression and basement membrane invasion, capillary tube formation, and vascular sprouting, as well as deposition of subendothelial ECM. The most conclusive anti-angiogenic activity of halofuginone was demonstrated in vivo (mouse corneal micropocket assay) by showing a marked inhibition of basic fibroblast growth factor (bFGF) -induced neovascularization in response to systemic administration of halofuginone, either i.p. or in the diet. The ability of halofuginone to interfere with key events in neovascularization, together with its oral bioavailability and safe use as an anti-parasitic agent, make it a promising drug for further evaluation in the treatment of a wide range of diseases associated with pathological angiogenesis.  相似文献   
29.
30.
Acetaminophen (AC) reduces the core temperatures (T(c)) of febrile and non-febrile mice alike. Evidence has been adduced that the selectively AC-sensitive PGHS isoform, PGHS-1b (COX-3), mediates these effects. PGHS-1b, however, has no catalytic potency in mice. To resolve this contradiction, AC was injected intravenously (i.v.) into conscious PGHS-1 gene-sufficient (wild-type (WT)) and -deficient (PGHS-1(-/-)) mice 60 min before or after pyrogen-free saline (PFS) or E. coli LPS (10 microg/kg) i.v. T(c) was monitored continuously; brain and plasma PGE(2) levels were determined hourly. AC at <160 mg/kg did not affect T(c) when given before PFS or LPS; at 160 mg/kg, it caused a approximately 2.5 degrees C T(c) fall in 60 min. LPS given after AC (all doses) induced a approximately 1 degrees C fever, not different from that in AC-untreated mice. But this rise was insufficient to overcome the hypothermia of the 160 mg/kg-treated mice; their T(c) culminated 1 degrees C below baseline. LPS given before AC similarly elevated T(c) approximately 1 degrees C. This rise was reduced to baseline in 30 min by 80 mg AC/kg; T(c) rebounded to its febrile level over the next 30 min. At 160 mg/kg, AC reduced T(c) to 4 degrees C below baseline in 60 min, where it remained until the end of the experiment. WT and PGHS-1(-/-) mice responded similarly to all the treatments. The basal brain and plasma PGE(2) levels of PFS mice and the elevated plasma levels of LPS mice were unchanged by AC at 160 mg/kg; but the latter's brain levels were reduced at 1h, then recovered. Thus, AC could exert an anti-PGHS-2 effect when this enzyme is upregulated in the brain of febrile mice. The hypothermia it induces in non-febrile mice, therefore, is due to another mechanism. PGHS-1b is not involved in either case.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号