首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110525篇
  免费   8457篇
  国内免费   6967篇
  125949篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3578篇
  2019年   4374篇
  2018年   4353篇
  2017年   3229篇
  2016年   4599篇
  2015年   6677篇
  2014年   7863篇
  2013年   8314篇
  2012年   9960篇
  2011年   8868篇
  2010年   5444篇
  2009年   4746篇
  2008年   5585篇
  2007年   4923篇
  2006年   4370篇
  2005年   3331篇
  2004年   2933篇
  2003年   2531篇
  2002年   2205篇
  2001年   2001篇
  2000年   1860篇
  1999年   1841篇
  1998年   1014篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
The Hmx homeobox gene family is comprised of three members in mammals, Hmx1, Hmx2, and Hmx3, which are conserved across the animal kingdom and are part of the larger NKL clustered family of homeobox genes. Expression domains of Hmx genes in distantly related species such as Drosophila and mouse suggest an ancestral function in rostral central nervous system development. During vertebrate evolution, the Hmx genes appear to have been recruited into additional roles in inner ear morphogenesis and specification of vestibular inner ear sensory and supporting cell types. Being derived from a common ancestor, the vertebrate Hmx gene family is thus a strong candidate to investigate functional overlap versus the unique roles played by multiple genes belonging to the same family. The functions of Hmx2 and Hmx3 were investigated via directed gene mutagenesis and the primary regions where Hmx2 and Hmx3 exert their individual functions are consistent with their expression domains, such as the vestibule and uterus. Meanwhile, it is notable that some tissues where both Hmx2 and Hmx3 are extensively expressed were not severely affected in either of the Hmx2 or Hmx3 single mutant mice, suggesting a possible functional overlap existing between these two genes. Compound Hmx2 and Hmx3 double mutant mice showed more severe defects in the inner ear than those displayed by either single knockout. Furthermore, novel abnormalities in the hypothalamic-neuroendocrine system, which were never observed in either of the single mutant mice, confirmed a hypothesis that Hmx2 and Hmx3 also function redundantly to control embryonic development of the central nervous system.  相似文献   
992.
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.  相似文献   
993.
994.
A novel diazocan containing dipeptide mimetic was synthesized via reductive N-N bond cleavage of a pyrazolidino-pyrazolidine using Raney-Ni and evaluated as an ICE inhibitor. This versatile 8-membered ring containing scaffold possesses an N-5 ring nitrogen that was used to explore structure-activity relationships in a cell-based assay measuring inhibition of interleukin-1beta.  相似文献   
995.
Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca2+ chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.  相似文献   
996.
997.
998.
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids.  相似文献   
999.
微粒体甘油三酯转运蛋白MTP(microsomaltriglyceridetransferprotein ,MTP)首先是从牛的肝细胞微粒体碎片中分离获得的 ,其作用是加速甘油三脂 (triglyceride ,TG)、胆固醇 (cholesterylester ,CE)和磷脂酰胆碱 (phos phatidylcholine ,PC)的转运和细胞或亚细胞膜的生物合成。它后来在肝细胞和小肠的微粒体膜中发现[1 ] ,由于它的位置及其转运TG可以推测与血浆脂蛋白中极低密度脂蛋白 (verylowdensitylipoprotein ,VLDL)和乳糜微粒 (chylomi crons ,CM)的组装过程有关。  相似文献   
1000.
Morphological observations and molecular analyses of the north‐western Pacific species of the red algal genus Grateloupia (Halymeniaceae) indicate the presence of an entity, which is somewhat similar in gross morphology to G. asiatica Kawaguchi et Wang but is distinguished from the latter species by some morphological features. These include: (i) a somewhat fleshy texture; (ii) wider and much thicker (4.5–10 mm wide and up to 1300 μm thick) axes, of which an inner cortex consists of more (6–9) cells; (iii) generally longer (up to 17 cm), marginal and surface proliferations that are clearly constricted (terete) at bases; and (iv) much elongated, oblong auxiliary cells. Phylogenetic analysis using the ribulose‐l,5‐bisphosphate carboxylase/ oxygenase (rbcL) gene of G. asiatica and the alga in question shows them to be distantly related and strongly supports the differentiation of these two entities at the species level. Judging from the literature, this entity is actually Grateloupia subpectinata Holmes, which has been placed into synonymy under G. asiatica [as G. filicina (Lamouroux) C. Agardh] or G. prolongata J. Agardh in previous reports, and therefore the Holmes name is reinstated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号