首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33943篇
  免费   3055篇
  国内免费   2476篇
  39474篇
  2024年   89篇
  2023年   418篇
  2022年   813篇
  2021年   1326篇
  2020年   963篇
  2019年   1181篇
  2018年   1158篇
  2017年   797篇
  2016年   1193篇
  2015年   2021篇
  2014年   2247篇
  2013年   2492篇
  2012年   3037篇
  2011年   2831篇
  2010年   1691篇
  2009年   1507篇
  2008年   1833篇
  2007年   1645篇
  2006年   1505篇
  2005年   1238篇
  2004年   1155篇
  2003年   985篇
  2002年   893篇
  2001年   719篇
  2000年   657篇
  1999年   586篇
  1998年   326篇
  1997年   314篇
  1996年   297篇
  1995年   248篇
  1994年   265篇
  1993年   181篇
  1992年   320篇
  1991年   296篇
  1990年   246篇
  1989年   229篇
  1988年   192篇
  1987年   156篇
  1986年   146篇
  1985年   151篇
  1984年   142篇
  1983年   103篇
  1982年   90篇
  1980年   59篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
To study the mechanisms of drought inhibiting photosynthesis and the role of PAs and ethylene, the photosynthetic rate (Pn), the maximal photochemical efficiency of PSII (Fv/Fm), the intercellular CO2 concentration (Ci), photorespiratory rate (Pr), the amount of chlorophyll (chl), antioxidant enzyme activity, ethylene levels, RuBPC (ribulose-1,5-bisphosphate carboxylase) activity and endogenous polyamine levels of pakchoi were examined, and an inhibitor of S-adenosylmethionine decarboxylase (SAMDC) and an inhibitor of ethylene synthesis and spermidine (Spd) were used to induce the change of endogenous polyamine levels. The results show that drought induced a decrease in Pn and RuBPC activity, an increase in the intercellular CO2 concentration (Ci), but no change in the actual photochemical efficiency of PSII (ΦPSII), and chlorophyll content. In addition, drought caused an increase in the free putrescine (fPut), the ethylene levels, a decrease in the Spd and spermine (Spm) levels, and the PAs/fPut ratio in the leaves. The exogenous application of Spd and amino oxiacetic acid (AOAA, an inhibitor of ethylene synthesis) markedly reversed these drought-induced effects on polyamine, ethylene, Pn, the PAs/fPut ratio and RuBPCase activity in leaves. Methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SAMDC resulting in the inability of activated cells to synthesize Spd and Spm, exacerbates the negative effects induced by drought. These results suggest that the decrease in Pn is at least partially attributed to the decrease of RuBPC activity under drought stress and that drought inhibits RuBPC activity by decreasing the ratio of PAs/fPut and increasing the release of ethylene.  相似文献   
993.
Wang  Jianli  Ma  Wenjian  Wang  Yuzhou  Lin  Lin  Wang  Tianyi  Wang  Yuqian  Li  Ye  Wang  Xiaoyuan 《Applied microbiology and biotechnology》2018,102(24):10523-10539

Pseudomonas putida KT2442, a natural producer of polyhydroxyalkanoate, spends a lot of energy and carbon sources to form flagella and pili; therefore, deleting the genes involved in the biosynthesis and assembly of flagella and pili might improve PHA productivity. In this study, two novel deletion systems were constructed in order to efficiently remove the 76 genes involved in the biosynthesis and assembly of flagella and pili in P. putida KT2442. Both systems combine suicide-plasmid-based homologous recombination and mutant lox site-specific recombination and involve three plasmids. The first includes pK18mobsacB, pWJW101, and pWJW102; and the second includes pZJD29c, pDTW202, and pWJW103. These newly constructed systems were successfully used to remove different gene clusters in P. putida KT2442 and showed a high deletion efficiency (above 90%) whether for the second-round or the third-round recombination. Both systems could efficiently delete the gene PP4378 encoding flagellin in putida KT2442, resulting in the mutant strain WJPP01. The second system was used to remove the pili-forming gene cluster PP2357-PP2363 in putida KT2442, resulting in the mutant strain WJPP02, and also used to remove the flagella-forming gene cluster PP4329-PP4397 in WJPP02, resulting in the mutant strain WJPP03. Compared with the wild-type KT2442, the 1.2% genome reduction mutant WJPP03 grew faster, lacked flagella and motility, showed sharply decreased biofilm and 3′,5′-cyclic diguanylic acid (c-di-GMP), but accumulated more polyhydroxyalkanoate. The biomass, polyhydroxyalkanoate yield, and content of WJPP03 increased 19.1, 73.4, and 45.6%, respectively, with sodium hexanoate supplementation, and also increased 11.4, 53.6, and 37.9%, respectively, with lauric acid supplementation.

  相似文献   
994.
Phytochemical investigation of the root barks of Periploca chrysantha D. S. Yao, X. C. Chen et J. W. Ren (Asclepiadaceae) led to the elucidation of four new spiroorthoester group-containing pregnane glycosides (14), named periplosides W-Y and 3-O-formyl-periploside F. Their structures were elucidated on the basis of extensive spectroscopic analysis. The four new pregnane glycosides (14) were found to exhibit significantly inhibitory activities against the proliferation of B and T lymphocytes and favorable selective index comparable to those of cyclosporin A.  相似文献   
995.
While correlation of developmental stage with embryonic age of the human primary dentition has been well documented, the available information regarding the differentiation timing of the primary teeth was largely based on the observation of initial mineralization and varies significantly. In this study, we aimed to document precise differentiation timing of the developing human primary dentition. We systematically examined the expression of odontogenic differentiation markers along with the formation of mineralized tissue in each developing maxillary and mandibular teeth from human embryos with well-defined embryonic age. We show that, despite that all primary teeth initiate development at the same time, odontogenic differentiation begins in the maxillary incisors at the 15th week and in the mandibular incisors at the 16th week of gestation, followed by the canine, the first primary premolar, and the second primary premolar at a week interval sequentially. Despite that the mandibular primary incisors erupt earlier than the maxillary incisors, this distal to proximal sequential differentiation of the human primary dentition coincides in general with the sequence of tooth eruption. Our results provide an accurate chronology of odontogenic differentiation of the developing human primary dentition, which could be used as reference for future studies of human tooth development.  相似文献   
996.
In this study, we investigated whether nitric oxide (NO) modulated injury-induced neuropeptide Y (NPY) releasing and c-Fos expression in the cuneate nucleus (CN) after median nerve transection (MNT). We first examined the temporal changes of neuronal nitric oxide synthase (nNOS) expression in the dorsal root ganglion (DRG) and CN after MNT. Following MNT, the amounts of nNOS-like immunoreactive (nNOS-LI) neurons in the DRG and CN significantly increased as compared with those of the sham-operated rats. Furthermore, 4 weeks after MNT, the increases of nNOS-LI neurons in the DRG and CN were attenuated by pre-emptive lidocaine treatment in a dose-dependent manner. Finally, 4 weeks after MNT, pre-stimulation administration of L-NAME (N ω-Nitro-l-arginine methyl ester) or 7-NI (7-nitroindazole) suppressed the amount of NPY release from the stimulated terminals and thus attenuated c-Fos expression in the CN. Our data implied that NO would modulate neuronal activity in the DRG and CN both after MNT.  相似文献   
997.
Coinfection of the same host cell by multiple viruses may lead to increased competition for limited cellular resources, thus reducing the fitness of an individual virus. Selection should favor viruses that can limit or prevent coinfection, and it is not surprising that many viruses have evolved mechanisms to do so. Here we explore whether coinfection is limited in the RNA bacteriophage 6 that infects Pseudomonas phaseolicola. We estimated the limit to coinfection in 6 by comparing the frequency of hybrids produced by two marked phage strains to that predicted by a mathematical model based on differing limits to coinfection. Our results provide an alternative method for estimating the limit to coinfection and confirm a previous estimate between two to three phages per host cell. In addition, our data reveal that the rate of coinfection at low phage densities may exceed that expected through random Poisson sampling. We discuss whether phage 6 has evolved an optimal limit that balances the costly and beneficial fitness effects associated with multiple infections.  相似文献   
998.
There is an emerging understanding of the importance of the vascular system within stem cell niches. Here, we examine whether neural stem cells (NSCs) in the adult subventricular zone (SVZ) lie close to blood vessels, using three-dimensional whole mounts, confocal microscopy, and automated computer-based image quantification. We found that the SVZ contains a rich plexus of blood vessels that snake along and within neuroblast chains. Cells expressing stem cell markers, including GFAP, and proliferation markers are closely apposed to the laminin-containing extracellular matrix (ECM) surrounding vascular endothelial cells. Apical GFAP+ cells are admixed within the ependymal layer and some span between the ventricle and blood vessels, occupying a specialized microenvironment. Adult SVZ progenitor cells express the laminin receptor alpha6beta1 integrin, and blocking this inhibits their adhesion to endothelial cells, altering their position and proliferation in vivo, indicating that it plays a functional role in binding SVZ stem cells within the vascular niche.  相似文献   
999.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   
1000.
A N Lin  G W Ashley  J Stubbe 《Biochemistry》1987,26(22):6905-6909
The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1-14C]iodoacetamide. The dithiothreitol-reduced E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14C. Sequencing of tryptic peptides shows that 2.8 equiv of 14C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14C. Sequencing of tryptic peptides shows that 1.4 equiv of 14C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号