全文获取类型
收费全文 | 44篇 |
免费 | 8篇 |
专业分类
52篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2011年 | 1篇 |
2010年 | 1篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 4篇 |
2004年 | 2篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1980年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有52条查询结果,搜索用时 12 毫秒
21.
Abstract. We present a Regional Ecosystem Simulation System (RESSys) which uses satellite data to define vegetation properties, topographic and soil data to define site characteristics, and a climate generator program to build a topographically sensitive microclimate map. We use a 150-km2 mountainous forested watershed in Glacier National Park to test the consequences of modeling various ecosystems processes using different versions of RESSys with increasing simplification of the landscape: (1) spatial scaling generated using 30 m x 30 m Landsat Thematic Mapper data versus 1 km x 1 km Advanced Very High Resolution Radiometer data for vegetation definition; (2) modeling hydrologic dynamics produced by using a topographic routing model versus a simple soil ‘bucket’ model; (3) variable landscape partitioning based on patterns of topographic complexity; and (4) representation of annual net primary productivity (ANPP) using an absorbed photosynthetic active radiation (APAR) model. We evaluate results of these simulations by comparison with average values and areal distributions of photosynthesis, evapotranspiration, hydrologic outflow, and ANPP. Our primary goal is to test whether areal average flux of carbon and water can be scaled linearly over a complex landscape. We found that daily photosynthesis could be predictably estimated between modeling scales with correlation coefficients ranging between 0.89 to 0.99. ANPP was highly correlated among the modeling scales with maximum differences between ANPP prediction of ca. 0.5Mg C ha-1 yr-1. Evapotranspiration was similarly predictable between scales but was influenced by differences associated with hydrologic modeling. Hydrologic outflow was not highly correlated between different modeling scales as a function of the different hydrologic models used at different scales. 相似文献
22.
Heterotrophic production of ascorbic acid by microalgae 总被引:5,自引:0,他引:5
An aerobic fermentation process has been developed for the production of L-ascorbic acid (vitamin C). After an extensive screening program for microorganisms capable of heterotrophically synthesizing L-ascorbic acid, a unicellular green microalga,Chlorella pyrenoidosa, was selected. This organism has a number of characteristics that recommend it as an industrial organism: (1) it can double every 3.5 h when growing aerobically in the dark on a glucose-minimal salts medium; (2) its small size and tough cell wall make it very insensitive to shear, allowing very high impeller velocities; (3) it can be grown to 100 g L–1 cell dry weight; (4) it is readily mutable by classical mutagenesis techniques; and (5) it has efficient growth kinetics with respect to yield of cell mass on glucose and oxygen. Fermentation process development and classical strain improvement have resulted in a greater than 70-fold increase in intracellular ascorbic acid concentration compared to the parent strainC. pyrenoidosa UTEX 1663. The process is compatible with existing industrial fermentation technology and equipment and is described in U.S. Patent 5,001,059. Patents have been submitted for a process in which the ascorbic acid accumulates extracellularly. 相似文献
23.
Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function 总被引:1,自引:0,他引:1
Sorek N Gutman O Bar E Abu-Abied M Feng X Running MP Lewinsohn E Ori N Sadot E Henis YI Yalovsky S 《Plant physiology》2011,155(2):706-720
Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function. 相似文献
24.
Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years 下载免费PDF全文
Zhen Yu Jingxin Wang Shirong Liu Shilong Piao Philippe Ciais Steven W. Running Benjamin Poulter James S. Rentch Pengsen Sun 《Global Ecology and Biogeography》2016,25(5):586-595
Aim Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying microclimate, but the impacts of change in snow cover on the annual C budget at a large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Location Non‐permafrost region of the northern forest area. Methods Here, we used site‐based eddy covariance flux data to investigate the relationship between depth of snow cover and ecosystem respiration (Reco) during winter. We then used the Biome‐BGC model to estimate the effect of reductions in winter snow cover on the C balance of northern forests in the non‐permafrost region. Results According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028 to 1.53 gC·m?2·day?1, accounting for 44 ± 123% of the annual C budget. Model simulation showed that over the past 30 years, snow‐driven change in winter C fluxes reduced non‐growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter Reco significantly decreased by 0.33 gC·m?2·day?1·year?1 in response to decreasing depth of snow cover, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Main conclusion Soil temperature is primarily controlled by snow cover rather than by air temperature as snow serves as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model‐simulated results show that both Reco and NEE are significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming as less C is emitted to the atmosphere. 相似文献
25.
Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis 下载免费PDF全文
Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the beta-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared alpha-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. 相似文献
26.
27.
The flower is one of the most complex and varied structures found in plants. Over the past decade, we have begun to understand how floral patterning is established in a handful of model species. Recent studies have identified the presence of several potential pathways for organ patterning. Many genes that are involved in these pathways have been cloned, providing opportunities for further fruitful investigations into the genetic components of flower development. 相似文献
28.
29.
Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari 总被引:2,自引:0,他引:2
We utilized an ecosystem process model to investigate the influence of precipitation and soil water potential on vegetation phenology in the semi‐arid, drought‐deciduous ecosystems in the Kalahari region of South Africa. The timing of leaf flush was assumed to be the first day during which a rainfall event exceeded that day's estimate of potential evapotranspiration after a defined dry season. Leaf senescence was assumed to be a dynamic feedback between soil water potential and net plant carbon gain and was determined by dynamically modeling the effects of concomitant trends in soil water potential and net primary production on leaf area index (LAI). Model predictions of LAI were compared with satellite‐derived normalized difference vegetation indices (NDVI) for 3 years at two sites along the Kalahari transect. The mean absolute error for the prediction of modeled leaf flush date compared with leaf flush dates estimated from NDVI were 10.0 days for the Maun site and 39.3 days for the Tshane site. Correlations between model predicted 10‐day average LAI and 10‐day composite NDVI for both Maun and Tshane were high (ρ=0.67 and 0.74, respectively, P<0.001), suggesting that this method adequately predicts intra‐annual leaf area dynamics in these dry tropical ecosystems. 相似文献
30.
Running JA Severson DK Schneider KJ 《Journal of industrial microbiology & biotechnology》2002,29(2):93-98
Nine strains of Chlorella protothecoides and 43 strains representing the five species of Prototheca were screened in flask culture for their ability to synthesize L-ascorbic acid (AA). Ascorbic acid was detected in all strains, ranging from 4.8 to 0.38 mg AA g−1 of dry cells. Organisms selected for further study grew well and maintained their AA productivity above a pH of 3.5. They
can produce AA using a variety of carbon and nitrogen sources. Aerobic fermentation of selected strains resulted in extracellular
accumulation of AA up to 76 mg l−1. By classical mutagenesis and selection methods, we created mutants of Prototheca moriformis ATCC 75669 that produced greater quantities of AA than the wild-type strain (78.4 vs 21.9 mg AA g−1 of cells). A process based on extracellular production could greatly reduce the cost of AA manufacture by eliminating the
need for extraction of the AA from the cells. Journal of Industrial Microbiology & Biotechnology (2002) 29, 93–98 doi:10.1038/sj.jim.7000275
Received 04 December 2001/ Accepted in revised form 09 May 2002 相似文献