首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   23篇
  国内免费   6篇
  232篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1984年   3篇
  1983年   2篇
  1979年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1966年   2篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1956年   2篇
  1955年   1篇
  1946年   3篇
  1945年   2篇
排序方式: 共有232条查询结果,搜索用时 0 毫秒
21.
River oases at the southern fringe of the Taklamakan desert in NW China are surrounded by belts of spontaneous vegetation that protect the oases from sand drift. As an important source of forage, fuel and construction wood, this foreland vegetation is also a component part of the agricultural system of the oases but has been, and still is, destroyed through overuse. Within a broader study that aimed to provide a basis for a sustainable management of this foreland vegetation, biomass and production were studied in four vegetation types dominated either by Alhagi sparsifolia, Calligonum caput-medusae, Populus euphratica, or Tamarix ramosissima that were thought to occur under different regimes of natural flooding in the foreland of Qira (Cele) oasis, Xinjiang, NW China. Shoot biomass components were closely correlated to basal area (Calligonum, Populus, Tamarix) or shrub volume and projection area (Alhagi), enabling non-destructive estimation of stand biomass from shoot diameters or shrub dimensions with sufficient precision using allometric regression equations. Relationships between shoot basal area and biomass of the woody species (Calligonum, Populus and Tamarix) agreed with predictions by a theoretical model of plant vascular systems, suggesting that they are determined by hydraulic and mechanical requirements for shoot architecture. Average aboveground biomass densities of typical stands in late summer were 2.97 Mg/ha in Alhagi, 3.6 Mg/ha in a row plantation and 10.9 Mg/ha in homogenous stands of Calligonum, 22–29 Mg/ha in 22 year-old Populus forests and 1.9–3.1 Mg/ha in Tamarix-dominated vegetation. Annual aboveground production including wood and assimilation organs ranged from 2.11 to 11.3 Mg/ha in plantations of Calligonum, 3.17 to 6.12 Mg/ha in Populus, and 1.55 to 1.74 Mg/ha (based on total ground area) or 3.10 to 7.15 Mg/ha (in homogenous stands) in Tamarix. Production of Alhagi is equal to peak biomass. A thinning treatment simulating use by the local population enhanced productivity of Calligonum, Populus and Tamarix. A complete harvest of Alhagi in late August decreased production in the following year. An artificial flood irrigation treatment did not sufficiently increase soil water content except in the uppermost layer and had no clear beneficial effect on growth of the four species and even a negative effect on Alhagi, which was due to increased competition from annual species. As biomass and production with or without artificial irrigation were much higher than values expected for rain-fed desert vegetation at a mean annual precipitation of 35 mm, it is concluded that the existence of all vegetation types studied is probably based on permanent access to groundwater and that natural floods or precipitation do not contribute to their water supply. The effects of agricultural groundwater use in the oasis on groundwater in the foreland of the oasis need further study. Sustainable use of this productive vegetation is possible but requires proper management.  相似文献   
22.
23.
Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.  相似文献   
24.
25.
Question: Can above‐ground biomass of naturally growing Alhagi sparsifolia shrubs be estimated non‐destructively? Location: Qira oasis (37° 01′N, 80° 48′E, 1365 ma.s.l.) at the southern fringe of the Taklamakan desert, Xinjiang, NW China. Methods: Two methods were compared to estimate above‐ground biomass (AGB) of Alhagi. At first shrub AGB was estimated by manual ground measurements (called ‘allometric approach’) of length, width and height of 50 individuals. Subsequently regression equations were established between calculated shrub canopy volume and shrub AGB (r2= 0.96). These equations were used to calculate AGB from manual ground measurements in 20 sample plots within the Alhagi field. Secondly, kite‐based colour aerial photography coupled with the use of a Geographic Information System (called ‘GIS approach’) was tested. First and second order polynomial regressions between AGB data of the 50 individual shrubs and their respective canopy area allowed to automatically calculate the AGB of all remaining shrubs covered by the photograph (r2= 0.92 to 0.96). The use of non‐linear AGB regression equations required an automatised separation of shrubs growing solitary or in clumps. Separation criteria were the size and shape of shrub canopies. Results: The allometric approach was more reliable but also more time‐consuming than the GIS‐based approach. The latter led to an overestimation of Alhagi dry matter in densely vegetated areas. However, this systematic error decreased with increasing size of the surveyed area. Future research in this field should focus on improvements of AGB estimates in areas of high shrub density.  相似文献   
26.
The key regulatory enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR), is a nuclear-encoded plastid protein. Its post-translational transport into plastids is determined by its substrate. The precursor of POR (pPOR) is taken up and processed to mature size by plastids only in the presence of protochlorophyllide (Pchlide). In etioplasts, the endogenous level of Pchlide saturates the demands for pPOR translocation. During the light-induced transformation of etioplasts into chloroplasts, the Pchlide concentration declined drastically, and isolated chloroplasts rapidly lost the ability to import the precursor enzyme. The chloroplasts' import capacity for the pPOR, however, was restored when their intraplastidic level of Pchlide was raised by incubating the organelles in the dark with delta-aminolevulinic acid, a common precursor of tetrapyrroles. Additional evidence for the involvement of intraplastidic Pchlide in regulating the transport of pPOR into plastids was provided by experiments in which barley seedlings were grown under light/dark cycles. The intraplastidic Pchlide concentration in these plants underwent a diurnal fluctuation, with a minimum at the end of the day and a maximum at the end of the night period. Chloroplasts isolated at the end of the night translocated pPOR, whereas those isolated at the end of the day did not. Our results imply that the Pchlide-dependent transport of the pPOR into plastids might be part of a novel regulatory circuit by which greening plants fine tune both the enzyme and pigment levels, thereby avoiding the wasteful degradation of the imported pPOR as well as photodestruction of free Pchlide.  相似文献   
27.
多枝柽柳气体交换特性研究   总被引:30,自引:9,他引:30  
在美国柽柳(Tamarix L.)被列为臭名昭著的十大我来杂草之一,而在中国,它则作为一种濒危物种生存状况堪忧。对多枝柽柳(Tamarix ramosissima L bd.)气体交换进行研究,探讨其蒸汽压差(VPD)、叶水势、气孔导度(g)和水分利用效率(WUE)之间的联系,结果表明,柽柳之所以能在沙漠生存又能在美国河岸地带疯狂扩展,主要原因可能是:①柽柳属地下水湿生植物,发达的根系能直达地下水。②柽柳适应性生境很广,作为一种阳性树种,柽柳非常耐旱,能够在很低的叶水势(φ)条件下(-4.59Mpa)进行光合作用,而较低的光补偿点和暗呼吸速率又反映出其耐阴湿的特点。③灵敏的气孔适应性调整:其g对VPD的灵敏性随着干湿季其体内的水分状况变化而变化,调整蒸腾速率,从而影响其WUE;gs与φ成显著正相关(P≤0.05);gs与WUE显著相关(P≤0.05),但只有当gs处于正在下降的时候,光合作用和蒸腾作用两个交换过程受轻微限制时,可得到水消耗和CO2吸收的最优协调,WUE达到最大值。这些适应性调整可能是柽柳能在美国河岸地带疯狂扩展的主要原因。实验结果表明,柽柳完全能够适应荒漠生长环境,因而导致柽柳在我国处于濒危状况的根本原因不是传统认为的干旱的自然环境,而主要是人为因素造成地下水位下降以及过度砍伐所致。  相似文献   
28.
The glucagon and glucagon-like peptide-1 (GLP-1) receptors are homologous family B seven-transmembrane (7TM) G protein-coupled receptors, and they selectively recognize the homologous peptide hormones glucagon (29 amino acids) and GLP-1 (30-31 amino acids), respectively. The amino-terminal extracellular domain of the glucagon and GLP-1 receptors (140-150 amino acids) determines specificity for the carboxyl terminus of glucagon and GLP-1, respectively. In addition, the glucagon receptor core domain (7TM helices and connecting loops) strongly determines specificity for the glucagon amino terminus. Only 4 of 15 residues are divergent in the glucagon and GLP-1 amino termini; Ser2, Gln3, Tyr10, and Lys12 in glucagon and the corresponding Ala8, Glu9, Val16, and Ser18 in GLP-1. In this study, individual substitution of these four residues of glucagon with the corresponding residues of GLP-1 decreased the affinity and potency at the glucagon receptor relative to glucagon. Substitution of distinct segments of the glucagon receptor core domain with the corresponding segments of the GLP-1 receptor rescued the affinity and potency of specific glucagon analogs. Site-directed mutagenesis identified the Asp385 --> Glu glucagon receptor mutant that specifically rescued Ala2-glucagon. The results show that three distinct epitopes of the glucagon receptor core domain determine specificity for the N terminus of glucagon. We suggest a glucagon receptor binding model in which the extracellular ends of TM2 and TM7 are close to and determine specificity for Gln3 and Ser2 of glucagon, respectively. Furthermore, the second extracellular loop and/or proximal segments of TM4 and/or TM5 are close to and determine specificity for Lys12 of glucagon.  相似文献   
29.
99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4 (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4 treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4 treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4 induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs.  相似文献   
30.
塔克拉玛干沙漠南缘柽柳和胡杨水势季节变化研究   总被引:14,自引:0,他引:14  
对塔克拉玛干沙漠南缘的柽柳和胡杨生长周期内的清晨水势和水势日变化的连续野外测定表明,两种植物在整个生长期内均未出现明显的水分亏缺.清晨水势的季节变化幅度不大,正午水势有不同程度的降低;一次性人工灌溉对植物水分状况没有明显影响.采伐利用方式不影响植物的水分状况.地下水是柽柳和胡杨生存与生长的先决条件.维持该区域地下水位的基本稳定是保证该区域柽柳和胡杨恢复重建的重要前提.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号