首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   99篇
  892篇
  2021年   17篇
  2020年   8篇
  2019年   12篇
  2018年   11篇
  2017年   14篇
  2016年   23篇
  2015年   43篇
  2014年   30篇
  2013年   44篇
  2012年   42篇
  2011年   43篇
  2010年   20篇
  2009年   22篇
  2008年   35篇
  2007年   21篇
  2006年   40篇
  2005年   27篇
  2004年   26篇
  2003年   22篇
  2002年   17篇
  2001年   18篇
  2000年   12篇
  1999年   11篇
  1998年   7篇
  1992年   8篇
  1991年   9篇
  1990年   11篇
  1989年   17篇
  1988年   13篇
  1987年   12篇
  1986年   17篇
  1985年   14篇
  1984年   12篇
  1983年   8篇
  1982年   13篇
  1980年   9篇
  1979年   8篇
  1978年   11篇
  1977年   14篇
  1976年   7篇
  1975年   7篇
  1974年   14篇
  1973年   10篇
  1972年   10篇
  1971年   9篇
  1970年   6篇
  1969年   9篇
  1968年   8篇
  1967年   10篇
  1966年   6篇
排序方式: 共有892条查询结果,搜索用时 0 毫秒
31.
Mycobacillin non-producers, whether sporogenous or asporogenous, possess less exoprotease, but effective exoprotease producers are not always good mycobacillin yielders. There might exist a minimum level of exoprotease formation for elaboration of mycobacillin.  相似文献   
32.
Splenic lymphocytes from chickens infected with reticuloendotheliosis virus (REV) are cytostatically impaired in their ability to undergo mitogen-induced blastogenesis ([3H]TdR uptake and proliferation), but are fully capable of eliciting cytotoxic reactions against allogeneic, 51Chromium-labeled chicken erythrocytes. Spleen cells from birds with reticuloendotheliosis (REs) are able to suppress DNA synthesis of normal splenic lymphocytes (Ns), but are unable to inhibit 1[3H]TdR uptake by chick embryo fibroblasts. The suppression of the Ns mitogenic response is not restricted by major histocompatibility (B-locus) differences between populations of REs suppressor and Ns target cells. Moreover, infection of birds with an attenuated form of REV, which replicates in the host but does not cause tumorigenesis, also leads to suppression of phytohemagglutinin-induced, [3H]TdR uptake by host lymphocytes. These results are discussed in terms of the interaction between viral-infected/transformed cells and host defense mechanisms.  相似文献   
33.
Human leukocyte and tritium-labeled fibroblast interferons, prepared by induction with Sendai virus and with double-stranded polyinosinic acid.polycytidylic acid respectively, have been studied in relation to the carbohydrate moieties attached to them. These interferons were partially purified by immunoabsorbance and by gel filtration. On treatment with glycosidases, about 80% of the 3H-labeled sugar moieties in this glycoprotein-containing fraction was removed without detectable alteration of the antiviral activity or antibody-binding properties characteristic of interferon. The molecular weight of leukocyte interferon was reduced by about 4000. As others have reported, the heterogeneous character of interferon revealed by isoelectric focusing was greatly reduced by the enzyme treatment.  相似文献   
34.
35.
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a “4-heads-down” conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a “2-heads-up/2-heads-down” conformation where two heads (covalent dimers) are in the “down position,” forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an “up position.” The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.  相似文献   
36.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   
37.
38.
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies.  相似文献   
39.
SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.  相似文献   
40.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号