首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2647篇
  免费   217篇
  国内免费   1篇
  2022年   18篇
  2021年   53篇
  2020年   29篇
  2019年   41篇
  2018年   53篇
  2017年   47篇
  2016年   79篇
  2015年   94篇
  2014年   118篇
  2013年   152篇
  2012年   182篇
  2011年   164篇
  2010年   98篇
  2009年   99篇
  2008年   118篇
  2007年   108篇
  2006年   94篇
  2005年   84篇
  2004年   94篇
  2003年   67篇
  2002年   74篇
  2001年   63篇
  2000年   59篇
  1999年   47篇
  1998年   18篇
  1997年   28篇
  1996年   22篇
  1993年   18篇
  1992年   54篇
  1991年   27篇
  1990年   30篇
  1989年   29篇
  1988年   40篇
  1987年   31篇
  1986年   27篇
  1985年   50篇
  1984年   27篇
  1983年   34篇
  1982年   19篇
  1981年   30篇
  1980年   20篇
  1979年   30篇
  1978年   30篇
  1977年   21篇
  1976年   19篇
  1975年   29篇
  1974年   16篇
  1973年   23篇
  1972年   22篇
  1971年   19篇
排序方式: 共有2865条查询结果,搜索用时 562 毫秒
991.
992.
The presence of serotonin 1A receptor (5-HT(1A)-R) in the hippocampus, amygdala, and most regions of the frontal cortex is essential between postnatal day-5-21 (P5-21) for the expression of normal anxiety levels in adult mice. Thus, the 5-HT(1A)-R plays a crucial role in this time window of brain development. We show that the 5-HT(1A)-R-mediated stimulation of extracellular signal-regulated kinases 1 and 2 (Erk1/2) in the hippocampus undergoes a transition between P6 and P15. At P6, a protein kinase C (PKC) isozyme is required for the 5-HT(1A)-R -->Erk1/2 cascade, which causes increased cell division in the dentate gyrus. By contrast, at P15, PKC alpha participates downstream of Erk1/2 to augment synaptic transmission through the Schaffer Collateral pathway but does not cause increased cell division. Our data demonstrate that the 5-HT(1A)-R -->Erk1/2 cascade uses PKC isozymes differentially, first boosting the cell division to form new hippocampal neurons at P6 and then undergoing a plastic change in mechanism to strengthen synaptic connections in the hippocampus at P15.  相似文献   
993.
Brain mononuclear phagocyte (perivascular macrophage and microglia, MG) inflammatory neurotoxins play a principal role in the pathogenesis of Parkinson's disease; chief among these are reactive oxygen species (ROS). We posit that aggregated, misfolded and oxidized alpha-synuclein (a major constituent of Lewy bodies), released or secreted from dying dopaminergic neurons, induces microglial ROS production that is regulated by ion channels and as such affects disease progression. To address this hypothesis, we performed patch clamp recordings of outward ionic currents in murine microglia and characterized their links to ROS production during alpha-synuclein stimulation. Aggregated nitrated alpha-synuclein induced ROS production in a dose-dependent manner that was inhibited by voltage-gated potassium current blockade, and to a more limited degree, by chloride current blockade. Interestingly, ROS produced in MG primed with tumor necrosis factor alpha and activated with phorbol myristate acetate was attenuated by voltage-gated potassium current blockade and more completely by chloride current blockade. In contrast, amyloid beta or cell membrane extract failed to induce microglial ROS production. Similar results were obtained using bone marrow-derived macrophages. The association of ROS production with specific plasma membrane ion currents provides a link between regulation of microglial ion transport and oxygen free radical production. Understanding these linkages may lead to novel therapeutics for Parkinson's disease where modulation of redox-related stress may slow disease progression.  相似文献   
994.
995.
The aim of the present study is to investigate the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the cell growth, apoptosis, genomic DNA damage and the expression of telomerase and associated factors in human normal and brain cancer cells. Here, human normal un-transformed fibroblasts (MRC-5), human normal hTERT-immortalised fibroblasts (hTERT-BJ1) and human brain cancer cell lines (glioblastoma cell line, A-172 and medulloblastoma cell line, ONS-76) were treated with 0.5–3.0 μM TSA for 24 h. Exposure to TSA resulted in apoptosis in a dose-dependent manner in the brain cancer cells. Glioblastoma cell line (A-172) displayed higher sensitivity to TSA-induced cell killing effect and apoptosis than the medulloblastoma cell line (ONS-76). The brain cancer cell lines and hTERT-BJ1 cell line displayed significant inhibition in telomerase activity and hTERT mRNA level after 2 μM TSA treatment. Elevated expressions of p53 and p21 with a decrease in cyclin-D level supported the observation on cell cycle arrest following TSA treatment. Upregulation of Bax and cytochrome c correlated with the apoptotic events in TSA-treated cells. This study suggests that telomerase and hTERT might be the primary targets of TSA which may have the potential to be used as a telomerase inhibitor in cancer therapy.  相似文献   
996.
New gateways to discovery   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   
997.
Dominant mutations in the gamma2 regulatory subunit of AMP-activated protein kinase (AMPK), encoded by the gene PRKAG2, cause glycogen storage cardiomyopathy. We sought to elucidate the effect of the Thr400Asn (T400N) human mutation in a transgenic mouse (TGT400N) on AMPK activity, and its ability to protect the heart against ischemia-reperfusion injury. TGT400N hearts had markedly vacuolated myocytes, excessive accumulation of glycogen, hypertrophy, and preexcitation. Early activation of myocardial AMPK, followed by depression, and then recovery to wild-type levels was observed. AMPK activity correlated inversely with glycogen content. Partial rescue of the phenotype was observed when TGT400N mice were crossbred with TGalpha2DN mice, which overexpress a dominant negative mutant of the AMPK alpha2 catalytic subunit. TGT400N hearts had greater infarct sizes and apoptosis when subjected to ischemia-reperfusion. Increased AMPK activity is responsible for glycogen storage cardiomyopathy. Despite high glycogen content, the TGT400N heart is not protected against ischemia-reperfusion injury.  相似文献   
998.
Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability.  相似文献   
999.
1000.
Myocardial fractional flow reserve (FFR(myo)) and coronary flow reserve (CFR), measured with guidewire, and quantitative angiography (QA) are widely used in combination to distinguish ischemic from non-ischemic coronary stenoses. Recent studies have shown that simultaneous measurements of FFR(myo) and CFR are recommended to dissociate conduit epicardial coronary stenoses from distal resistance microvascular disease. In this study, a more comprehensive diagnostic parameter, named as lesion flow coefficient, c, is proposed. The coefficient, c, which accounts for mean pressure drop, Delta p, mean coronary flow, Q, and percentage area stenosis, can be used to assess the hemodynamic severity of a coronary artery stenoses. Importantly, the contribution of viscous loss and loss due to momentum change for several lesion sizes can be distinguished using c. FFR(myo), CFR and c were calculated for pre-angioplasty, intermediate and post-angioplasty epicardial lesions, without microvascular disease. While hyperemic c decreased from 0.65 for pre-angioplasty to 0.48 for post-angioplasty lesion with guidewire of size 0.35 mm, FFR(myo) increased from 0.52 to 0.87, and CFR increased from 1.72 to 3.45, respectively. Thus, reduced loss produced by momentum change due to lower percentage area stenosis decreased c. For post-angioplasty lesion, c decreased from 0.55 to 0.48 with the insertion of guidewire. Hence, increased viscous loss due to the presence of guidewire decreased c compared with a lesion without guidewire. Further, c showed a linear relationship with FFR(myo), CFR and percentage area stenosis for pre-angioplasty, intermediate and post-angioplasty lesion. These baseline values of c were developed from fluid dynamics fundamentals for focal lesions, and provided a single hemodynamic endpoint to evaluate coronary stenosis severity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号